Publications by Andreas Rößler
Mathematical publications:
- Claudine von Hallern, Ricarda Mißfeldt and Andreas Rößler:
An exponential stochastic
Runge-Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type,
IMA J. Numer. Anal., Vol. xx, No. x, xx-xx (2024).
(link)
(arXiv)
- Felix Kastner and Andreas Rößler: An analysis of approximation algorithms for iterated
stochastic integrals and a Julia and Matlab simulation toolbox,
Numer. Algorithms, Vol. 93, No. 1, 27-66 (2023).
(link)
(arXiv)
(Julia Software LevyArea.jl)
(Matlab Software LevyArea.m)
- Claudine von Hallern and Andreas Rößler: A derivative-free Milstein type approximation
method for SPDEs covering the non-commutative noise case,
Stoch. PDE: Anal. Comp., Vol. 11, No. 4, 1672-1731 (2023).
(link)
(arXiv)
- Jan Mrongowius and Andreas Rößler: On the approximation and simulation of iterated
stochastic integrals and the corresponding Levy areas in terms of a multidimensional Brownian motion,
Stoch. Anal. Appl., Vol. 40, No. 3, 397-425 (2022).
(link)
(arXiv)
- David Cohen, Kristian Debrabant and Andreas Rößler: High order numerical
integrators for single integrand Stratonovich SDEs,
Appl. Numer. Math., Vol. 158, 264-270 (2020).
(link)
(arXiv)
- Claudine von Hallern and Andreas Rößler: An Analysis of the Milstein Scheme for
SPDEs without a Commutative Noise Condition,
Monte Carlo and Quasi-Monte Carlo Methods 2018,
pp. 503-521, Springer-Verlag (2020).
(link)
(arXiv)
- Michael B. Giles, Kristian Debrabant and Andreas Rößler: Analysis of
multilevel Monte Carlo path simulation using the Milstein discretisation,
Discrete Contin. Dyn. Syst., Ser. B, Vol. 24, No. 8, 3881-3903 (2019).
(link)
(arXiv)
- Claudine Leonhard and Andreas Rößler: Iterated stochastic integrals in infinite dimensions:
approximation and error estimates,
Stoch. PDE: Anal. Comp., Vol. 7, No. 2, 209-239 (2019).
(link)
(arXiv)
- Amir Haghighi and Andreas Rößler: Split-step double balanced approximation methods
for stiff stochastic differential equations,
Int. J. Comput. Math., Vol. 96, No. 5, 1030-1047 (2019).
(link)
- Claudine Leonhard and Andreas Rößler: Enhancing the Order of the Milstein Scheme for
Stochastic Partial Differential Equations with Commutative Noise,
SIAM J. Numer. Anal., Vol. 56, No. 4, 2585-2622 (2018).
(link)
(arXiv)
- Amir Haghighi, Seyed Mohammad Hosseini and Andreas Rößler: Diagonally drift-implicit Runge-Kutta methods of
strong order one for stiff stochastic differential systems,
J. Comp. Appl. Math., Vol. 293, 82-93 (2016).
(link)
- Kristian Debrabant and Andreas Rößler: On the acceleration of the
multi-level Monte Carlo method,
J. Appl. Probab., Vol. 52, No. 2, 307-322 (2015).
(link)
(arXiv)
- Dominique Küpper, Anne Kværnø and Andreas Rößler: Stability analysis and classification of
Runge-Kutta methods for index 1 stochastic differential-algebraic equations with scalar noise,
Appl. Numer. Math., Vol. 96, 24-44 (2015).
(link)
(arXiv)
- Kristian Debrabant and Andreas Rößler: Derivative-free weak approximation methods for stochastic
differential equations in finance,
Recent Developments in Computational Finance - Foundations, algorithms and applications,
Vol. 14, Interdisciplinary Mathematical Sciences, pp. 299-315, World Scientific (2013).
(link)
- Dominique Küpper, Anne Kværnø and Andreas Rößler: A Runge-Kutta method for index 1 stochastic
differential-algebraic equations with scalar noise,
BIT Numerical Mathematics, Vol. 52, No. 2, 437-455 (2012).
(link)
- Andreas Rößler: Runge-Kutta methods for the strong approximation
of solutions of stochastic differential equations,
SIAM J. Numer. Anal., Vol. 48, No. 3, 922-952 (2010).
(link)
- Evelyn Buckwar, Andreas Rößler and Renate Winkler: Stochastic
Runge-Kutta methods for Ito-SODEs with small noise,
SIAM J. Sci. Comput., Vol. 32, No. 4, 1789-1808 (2010).
(link)
- Andreas Rößler: Strong and weak approximation methods for stochastic
differential equations-some recent developments,
Recent Developments in Applied Probability and Statistics, p. 127-153, Physica-Verlag/Springer (2010).
(link)
(Preprint)
- Andreas Rößler: Stochastic Taylor expansions for functionals of diffusion processes,
Stoch. Anal. Appl., Vol. 28, No. 3, 415-429 (2010).
(link)
(arXiv)
- Andreas Rößler, Mohammed Seaïd and Mostafa Zahri: Numerical simulation of stochastic
replicator models in catalyzed RNA-like polymers,
Math. Comput. Simulation, Vol. 79, No. 12, 3577-3586 (2009).
(link)
- Andreas Rößler: Second order Runge-Kutta methods for Itô stochastic
differential equations,
SIAM J. Numer. Anal., Vol. 47, No. 3, 1713-1738 (2009).
(link)
- Kristian Debrabant and Andreas Rößler: Diagonally drift-implicit Runge-Kutta
methods of weak order one and two for Itô SDEs and stability analysis,
Appl. Numer. Math., Vol. 59, No. 3-4, 595-607 (2009).
(link)
- A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel: Trees and asymptotic
expansions for fractional stochastic differential equations,
Ann. Inst. Henri Poincaré Probab. Stat., Vol. 45, No. 1, 157-174 (2009).
(link)
- Kristian Debrabant and Andreas Rößler: Families of efficient second order Runge-Kutta
methods for the weak approximation of Itô stochastic differential equations,
Appl. Numer. Math., Vol. 59, No. 3-4, 582-594 (2009).
(link)
- Andreas Rößler, Mohammed Seaïd and Mostafa Zahri: Method of lines for stochastic
boundary-value problems with additive noise,
Appl. Math. Comput., Vol. 199, No. 1, 301-314 (2008).
(link)
- Kristian Debrabant and Andreas Rößler: Continuous Runge-Kutta methods
for Stratonovich stochastic differential equations,
Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 237-250, Springer-Verlag (2008).
(link)
- Kristian Debrabant and Andreas Rößler: Classification of stochastic Runge-Kutta
methods for the weak approximation of stochastic differential equations,
Math. Comput. Simulation, Vol. 77, No. 4, 408-420 (2008).
(link)
- Kristian Debrabant and Andreas Rößler: Continuous weak approximation for
stochastic differential equations,
J. Comput. Appl. Math., Vol. 214, No. 1, 259-273 (2008).
(link)
- Andreas Rößler: Second order Runge-Kutta methods for Stratonovich stochastic
differential equations,
BIT Numerical Mathematics, Vol. 47, No. 3, 657-680 (2007).
(link)
- Dominique Küpper, Jürgen Lehn and Andreas Rößler: A step size control
algorithm for the weak approximation of stochastic differential equations,
Numer. Algorithms, Vol. 44, No. 4, 335-346 (2007).
(link)
- Peter E. Kloeden and Andreas Rößler: Runge-Kutta methods for affinely controlled
nonlinear systems,
J. Comput. Appl. Math., 205 (2), 957-968 (2007).
(link)
- Andreas Rößler: Runge-Kutta methods for Itô stochastic differential equations
with scalar noise,
BIT Numerical Mathematics, Vol. 46, No. 1, 97-110 (2006).
(link)
- Andreas Rößler: Rooted tree analysis for order conditions of
stochastic Runge-Kutta methods for the weak approximation of
stochastic differential equations,
Stochastic Anal. Appl., Vol. 24, No. 1, 97-134 (2006).
(link)
(arXiv)
- Andreas Rößler: Explicit order 1.5 schemes for the strong approximation
of Itô stochastic differential equations,
Proc. Appl. Math. Mech., 5 (1), 817-818 (2005).
(link)
- Andreas Rößler: Stochastic Taylor expansions for the expectation of
functionals of diffusion processes,
Stochastic Anal. Appl., Vol. 22, No. 6, 1553-1576 (2004).
(link)
(arXiv)
- Andreas Rößler: An adaptive discretization algorithm for the weak
approximation of stochastic differential equations,
Proc. Appl. Math. Mech., 4 (1), 19-22 (2004).
(link)
- Andreas Rößler: Runge-Kutta methods for Stratonovich stochastic
differential equation systems with commutative noise,
J. Comput. Appl. Math., 164-165, 613-627 (2004).
(link)
- Andreas Rößler: Coefficients of Runge-Kutta schemes for Itô stochastic
differential equations,
Proc. Appl. Math. Mech., 3 (1), 571-572 (2003).
(link)
- Andreas Rößler: Embedded stochastic Runge-Kutta methods,
Proc. Appl. Math. Mech., 2 (1), 461-462 (2003).
(link)
- E. Kropat, A. Rössler, St. W. Pickl, G.-W. Weber: On theoretical and
practical relations between discrete optimization and nonlinear optimization,
Computational Technologies (Vychisl. Tekhnol.), 7, Spec. Iss., 27-62 (2002).
(link)
- J. Lehn, A. Rößler and O. Schein: Adaptive schemes for the numerical
solution of SDEs - a comparison,
J. Comput. Appl. Math., 138 (2), 297-308 (2002).
(link)
- E. Kropat, St. Pickl, A. Rössler, G.-W. Weber: A new algorithm from
semi-infinite optimization for a problem of time-minimum control,
Computational Technologies (Vychisl. Tekhnol.), 5, No.4, 67-81 (2000).
(link)
Further publications:
- Britta Kubera, Claudine Leonhard, Andreas Rößler and Achim Peters: Stress-Related
Changes in Body Form: Results from the Whitehall II Study,
Obesity, Vol. 25, No. 9, 1625–1632 (2017).
(link)