
Polynomial Wavelets and Wavelet Packet BasesT. Kilgore, J. Prestin & K. SeligAbstractWe discuss wavelet-oriented ideas to construct bases of algebraic polynomials.In particular, the splitting in the frequency domain is extended in order to de�newavelet packets.AMS classi�cation: 41A10, 33C25, 42C15Key words and phrases: polynomial wavelets, wavelet packets, Chebyshev polynomials,orthogonal bases, generalized Chebyshev shift1 IntroductionWe show here how algebraic polynomials on the interval [�1; 1] can be treated as waveletsand can be handled by wavelet techniques. Bene�ts include the potential for computa-tional e�ciency and accuracy in applications, for example to approximation problems.Theoretical developments also follow from systematic development and exploitation oforthogonality and from a generalization of the concept of shift invariance, which allow theapplication of the wavelet techniques on the interval. We will give here some of the basicideas and techniques used in the wavelet approach to polynomials, which is also related toan important application, the construction of a series of mutually orthogonal polynomialsof \optimal degree."As the idea of wavelets originated in connection with signal analysis, let us look �rst atthe original setting. Signal analysis naturally involves a \time domain" and a \frequencydomain". One splits the frequency domain dyadically into wavelet spaces, with dilationsand translations of a single function (mother wavelet) employed systematically to con-struct bases for these spaces. Wavelet packet spaces are subspaces which in turn furthersplit the wavelet spaces, using smaller frequency ranges. In signal analysis, a function(signal) is \time-localized" if it is relatively large in magnitude at a certain \time" andrelatively small otherwise. A \frequency-localized" function on the other hand is more orless of a single frequency. In a manifestation of Heisenberg's uncertainty principle, perfecttime localization and perfect frequency localization are mutually incompatible. Thus, one1



goal in signal analysis is the construction of \time-frequency-localized" bases, involving abalanced consideration of both domains. In a wavelet treatment of polynomials on [�1; 1],the time domain clearly should correspond to the underlying interval [�1; 1], while the fre-quency domain should correspond more or less to the degree of involved monomials. Moreprecise statements and adaptations of this and of other concepts require more systematictreatment.Wavelet techniques for polynomials on the interval [�1; 1] with respect to the Cheby-shev weight have been developed in Kilgore and Prestin [4], in Tasche [12] and in Plonka,Selig, and Tasche [7], where the generalized Chebyshev shift was discussed and applied tothe development of wavelets on the interval. An adaptation of the uncertainty principlecan be found in R�osler and Voit [10], which in turn could be applied to wavelets on [�1; 1]analogous to Narcowich and Ward [6] and to Selig [11].More recently, in Kilgore, Prestin, and Selig [5], wavelet techniques have been used toshow the existence of and to perform the construction of an orthogonal Schauder basisof polynomials of optimal degree for the space C[�1; 1], where optimal degree signi�esthat the nth polynomial in the basis is always of degree less than n(1 + �), for previouslygiven � > 0. Here, the use of wavelet packets is precisely what is needed to constructa polynomial basis in which the degree of the polynomials grows within the prescribedlimitations; as � decreases, the dimension of the packet spaces decreases, and the numberof packet spaces into which a given wavelet space must be split increases. This basisproblem has a long history which is discussed in further detail in the paper [5].Here, we will construct di�erent wavelet bases and wavelet packet bases on the interval.At �rst, we will de�ne polynomial subspaces by means of bases with the most frequencylocalization. Then, the idea of time-frequency-localized bases will be realized by building�nite linear combinations in order to obtain wavelets and wavelet packets as generalizedtranslates within each subspace.The wavelet spaces as well as the wavelet packet spaces will be orthogonal; theirorthogonality is given with respect to the weighted inner producthf; gi = 2� Z 1�1 f(x)g(x) dxp1� x2 :Hence, we use the orthogonal Chebyshev polynomials Tn(x) = cosn arccos x (n 2 IN0) forwhich hTn; Tmi = 8>>>>><>>>>>: 2 for n = m = 0;1 for n = m > 0;0 otherwise. (1)We will directly and explicitly describe the algebraic polynomials used in our waveletand wavelet packet bases by giving their Chebyshev expansions. Our examples are relatedto the trigonometric Dirichlet kernel and the de la Vall�ee Poussin kernels and correspond-ing shift-invariant spaces (see e.g. Privalov [9], and Prestin and Selig [8]).2



Note that in our construction the Chebyshev polynomials can be replaced by otherpolynomial systems orthonormal with respect to an arbitrary weight function w whichyield corresponding bases for L2w. Having similar frequency localization in terms of theinvolved orthonormal polynomials, the resulting polynomials will di�er in their propertiesof localization on [�1; 1] according to the weight w which will be related to di�erentapproximation properties of the bases. For the construction of the wavelets orthogonalwith respect to an arbitrary weighted inner product we refer to Depczynski and Jetter[1, 2] and Fischer and Prestin [3]. However, results for the wavelet packets and theuncertainty principles are still in progress. Therefore, we restrict ourselves here to theChebyshev weight and Chebyshev polynomials.2 Wavelets and Wavelet Packets on [�1; 1]Let N;M 2 IN be �xed, with N = 2�+1M for some � 2 IN ; � � 2 . Furthermore, let usintroduce, for any ` = 0; : : : ; 2� � 2, real coe�cientsaM̀(k) ; (k = �M; : : : ;M) and a02M(k) ; (k = �2M; : : : ; 2M) :With any �xed set of such coe�cients, we de�ne the following spaces of polynomialsV MN := span (fTk : k = 0; : : : ; N �Mg [[fa0M(k �M)TN�M+k + a0M(M � k)TN+M�k : k = 1; : : : ;Mg) ;WMN := span (fa0M(�k)TN+k � a0M(k)TN�k : k = 1; : : : ;M � 1g [[fTk : k = N +M; : : : ; 2N � 2Mg [[fa02M(k � 2M)T2N�2M+k + a02M(2M � k)T2N+2M�k : k = 1; : : : ; 2Mg) ;WMN;` := span (fa`�1M (�k)TN+2M(`�1)+k � a`�1M (k)TN+2M(`�1)�k : k = 1; : : : ;M � 1g [[faM̀(k �M)TN+M(2`�1)+k + aM̀(M � k)TN+M(2`+1)�k : k = 0; : : : ;Mg) ;for ` = 1; : : : ; 2� � 2, andWMN;2��1 := span (fa2��2M (�k)T2N�4M+k � a2��2M (k)T2N�4M�k : k = 1; : : : ;M � 1g [[fTk : k = 2N � 3M; : : : ; 2N � 2Mg [[fa02M(k � 2M)T2N�2M+k + a02M(2M � k)T2N+2M�k : k = 1; : : : ; 2Mg) :Given a general scheme for constructing the coe�cients aM̀ , it is then possible todouble repeatedly the values of M and N together. This successive doubling gives anested sequence of spaces V MN , a corresponding sequence of spaces WMN , and inside ofeach space WMN a set of subspaces WMN;1 ; : : : ;WMN;2��1 .3



Three relevant examples for the choice of the coe�cients are the following, where forall ` = 1; : : : ; 2� � 2(a) aM̀(k) = 8><>: 1 ;0 ; �M � k � 0 ;0 < k �M ;(b) aM̀(k) = M�k2M ;(c) aM̀(k) = M�kp2M2+2k2 ; �M � k �M ;�M � k �M ;and a02M(k) = a0M(k=2) for all �2M � k � 2M . Arisen from their trigonometric analogs,example (a) yields functions related to the Dirichlet kernel whereas examples (b) and (c)come from de la Vall�ee Poussin means and from an orthogonalization procedure appliedto translates thereof, respectively.For the sake of good time localization for the wavelet and wavelet packet bases to beconstructed we generally suggest that the coe�cients aM̀(k) should decrease monotonicallywith increasing k and should be normalized such that aM̀(�M) = 1.Based on the examples (b) and (c), the following graphs represent the size of thecoe�cients aM̀ with respect to their distribution in the frequency domain (see also thede�nition of the wavelet packet functions on page 6) and thus illustrate some of the manypossibilities for constructing the spaces WMN;` , for ` = 1; : : : ; 2� � 1 and � = 2 (left) and� = 3 (right). The graphs for � = 2 also depict one doubling of N and M .N = 8M N = 16M
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N 2 NExample (c)Now we study the spaces de�ned above and show that under certain conditions on thecoe�cients they spanV 2M2N := span (fTk : k = 0; : : : ; 2N � 2Mg [[fa02M(k � 2M)T2N�2M+k + a02M(2M � k)T2N+2M�k : k = 1; : : : ; 2Mg) :4



Theorem 2.1 For any real coe�cients aM̀(k) and a02M(k), it holds thatV MN [WMN � V 2M2N ; V MN ? WMN ;and WMN;` � WMN ; for ` = 1; :::; 2� � 1 :If aM̀(M) = 0 ; for ` = 1; :::; 2� � 2 ; (2)then WMN;`1 ? WMN;`2 ; for 1 � `1 < `2 � 2� � 1 ;and if moreover the coe�cients satisfy for all ` = 0; : : : ; 2� � 2(aM̀(k))2 + (aM̀(�k))2 > 0 ; for all k = 0; : : : ;M ;(a02M(k))2 + (a02M(�k))2 > 0 ; for all k = 0; : : : ; 2M � 1 ; (3)then we have V 2M2N = V MN �WMN (4)and WMN = 2��1M̀=1 WMN;` : (5)Proof. The inclusions V MN [WMN � V 2M2N and WMN;` � WMN follow directly from thede�nition of the spaces.Using (1) and (2) the orthogonality V MN ? WMN and WMN;`1 ? WMN;`2 can be easilychecked. In particular, for ` = `1 = `2 � 1 we obtain for any k = 0; : : : ;M � 1haM̀ (�k)TN+2M`�k + aM̀ (k)TN+2M`+k ; aM̀(k)TN+2M`�k � aM̀(�k)TN+2M`+ki= aM̀(�k) aM̀(k) (hTN+2M`�k ; TN+2M`�ki � hTN+2M`+k ; TN+2M`+ki)= 0 :For j`1 � `2j > 1 the orthogonality WMN;`1 ? WMN;`2 is evident.Let us now prove (4) and (5). From (3) it follows that not both aM̀ (�k) and aM̀(k)can vanish. Hence, dimspan faM̀(�k)TN+2M`+k � aM̀(k)TN+2M`�k :k = 1; : : : ;M � 1g = M � 1 ;dimspan faM̀(k �M)TN+M(2`�1)+k + aM̀(M � k)TN+M(2`+1)�k :k = 0; : : : ;Mg = M + 1 ;dimspan fa02M(k � 2M)T2N�2M+k + a02M(2M � k)T2N+2M�k :k = 1; : : : ; 2Mg = 2M :5



Then, for the dimensions of the spaces we obtaindimV MN = N + 1 ; dimWMN = N ; dimWMN;` = 2M ;for ` = 1; :::; 2� � 2, and dimWMN;2��1 = 4M :Hence dimV 2M2N = dimV MN + dimWMNand dimWMN = 2��1X̀=1 dimWMN;` :Together with the imbedding and orthogonality relations this proves the assertion. 2Following [7] one can de�ne scaling functions and wavelets in terms of Chebyshevpolynomials as generalized Chebyshev shifts of one function.We de�ne scaling functions for s = 0; : : : ; N , by�MN;s := 12 T0 + N�MXk=1 cos ks�N Tk + N+M�1Xk=N�M+1 a0M(k �N) cos ks�N Tk ;and wavelets, for s = 1; : : : ; N , by MN;s := N+M�1Xk=N�M+1 a0M(N � k) cos k(2s�1)�2N Tk + 2N�2MXk=N+M cos k(2s�1)�2N Tk ++ 2N+2M�1Xk=2N�2M+1 a02M(k � 2N) cos k(2s�1)�2N Tk :In this paper we introduce corresponding wavelet packet functions, for p = 1; :::; 2��1� 1and s = 1; : : : ; 2M , by MN;2p�1;s := N+(4p�3)M�1Xk=N+(4p�5)M+1a2p�2M (N + (4p � 4)M � k) sin k(2s�1)�4M Tk ++ N+(4p�1)M�1Xk=N+(4p�3)M a2p�1M (k �N � (4p � 2)M) sin k(2s�1)�4M Tk ; MN;2p;s := N+(4p�1)M�1Xk=N+(4p�3)M+1a2p�1M (N + (4p � 2)M � k) cos k(2s�1)�4M Tk ++ N+(4p+1)M�1Xk=N+(4p�1)M a2pM(k �N � 4pM) cos k(2s�1)�4M Tk ;6



and for s = 1; : : : ; 4M , by MN;2��1;s := 2N�3M�1Xk=2N�5M+1a2��2M (k � 2N � 4M) cos k(2s�1)�8M Tk ++ 2N�2MXk=2N�3M cos k(2s�1)�8M Tk ++ 2N+2M�1Xk=2N�2M+1 a02M(k � 2N) cos k(2s�1)�8M T2N�k :In order to illustrate their time localization, we have drawn corresponding functionsfor the coe�cients from the examples (a) and (b) for N = 128 and M = 16. The cor-responding functions for the example (c) are not shown; they would be quite similar tothose for (b). Example (a) Example (b)
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Example (a) Example (b)
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15Wavelet packet functions  16128;1;8We can show that the functions de�ned above build bases of the previously de�nedspaces.Theorem 2.2 For N;M 2 IN , with N = 2�+1M , we haveV MN = span f�MN;s : s = 0; : : : ; Ng ;WMN = span f MN;s : s = 1; : : : ; Ng ;WMN;` = span f MN;`;s : s = 1; : : : ; 2Mg ;for ` = 1; : : : ; 2� � 2 , andWMN;2��1 = span f MN;2��1;s : s = 1; : : : ; 4Mg :Proof. Let us write the basis used in the de�nition of V MN in the order given there asa column vector vMN , that is,vMN = �T0 ; : : : ; TN�M ; a0M(1�M)TN�M+1 + a0M(M � 1)TN+M�1 ;: : : ; a0M(�1)TN�1 + a0M(1)TN+1 ; 2a0M (0)TN�T :Let us similarly represent the given basis ofWMN as a column vector wMN and the givenbasis of WMN;` as a column vector wMN;`.Now we can write��MN;s�Ns=0 = AN vMN ; � MN;s�Ns=1 = BN wMNwhereAN =  2� �k;0 � �k;N2 cos ks�N !Ns;k=0 ; BN =  2 � �k;2N2 cos k(2s � 1)�2N !N;2Ns=1;k=N+1 :Also, for ` = 1; : : : ; 2� � 2, we have� MN;`;s�2Ms=1 = CMN;`wMN;` ; � MN;2��1;s�4Ms=1 = CMN;2��1wMN;2��1 ;8



where, for p = 1; : : : ; 2��1 � 1,CMN;2p =  2 � �k;N+4pM2 cos k(2s� 1)�4M !2M;N+4pMs=1;k=N+(4p�2)M+1 ;CMN;2p�1 =  2� �k;N+(4p�2)M2 sin k(2s� 1)�4M !2M;N+(4p�2)Ms=1;k=N+(4p�4)M+1 ;and CMN;2��1 =  2 � �k;2N2 cos k(2s � 1)�8M !4M;2Ns=1;k=2N�4M+1 :The proof of the theorem is now completed by noting that the regularity of thesematrices is well-known and follows directly from (see Tasche [12])ANATN = �N2 �s;k�Ns;k=0 ;BTNBN = �N2 �s;k(2 � �k;N)�Ns;k=1and (CMN;2p)TCMN;2p = (CMN;2p�1)TCMN;2p�1 = (M�s;k(2 � �k;2M))2Ms;k=1 : 2Note that in the above proof the transformation matrices between corresponding basesof the scaling function spaces, wavelet spaces, and wavelet packet spaces are given. Thetransformation from one basis to another can also be carried out by use of fast algorithms(cf. [12, 7]).3 Orthogonal basesHere we further impose orthogonality of the bases given in Theorem 2.2 . It turns out tobe guaranteed by a certain condition on the coe�cients aM̀ .Theorem 3.1 If aM̀(M) = 0 ; for ` = 1; :::; 2� � 2 ; (6)and (aM̀(k))2 + (aM̀(�k))2 = 1 for k = 0; : : : ;M ; ` = 0; : : : ; 2� � 2 ;(a02M(k))2 + (a02M(�k))2 = 1 for k = 0; : : : ; 2M � 1 ; (7)9



then we have the orthogonality propertiesh�MN;r ; �MN;si = N�r;s1 + �s;0 + �s;N2 ; for r; s = 0; : : : ; N ; (8)h MN;r ;  MN;si = N�r;s ; for r; s = 1; : : : ; N ; (9)h MN;`;r ;  MN;`;si =M�r;s for all ` = 1; : : : ; 2� � 1 and r; s = 1; : : : ; 2M ; (10)h MN;2��1;r ;  MN;2��1;si = 2M�r;s for r; s = 1; : : : ; 4M : (11)Notice the connection between the conditions (3) giving linear independence and (7)giving orthogonality.Proof. For the proof, we will use the orthogonality properties (1) of the Chebyshevpolynomials Tk. In order to show (8), we note thath�MN;r ; �MN;si = 12 + N�MXk=1 cos kr�N cos ks�N ++ M�1Xk=�M+1 (2M � k)22M2 + 2(M � k)2 cos (N � k)r�N cos (N � k)s�N= 1 + (�1)r�s2 + N�1Xk=1 cos kr�N cos ks�N= 2 + (�1)r�s + (�1)r+s4 + 12 N�1Xk=1  cos k(r � s)�N + cos k(r + s)�N != N�r;s1 + �s;0 + �s;N2 ;where we used that 12 + (�1)r2 + N�1Xk=1 cos kr�N = N�r;0mod2N :The proof of (9) - (11) follows the same ideas. 2The conditions (6) - (7) hold for our example (c). For this special case, the functionsare �MN;s = 12 T0 + N�MXk=1 cos ks�N Tk + 2M�1Xk=1 2M�kp2M2+2(M�k)2 cos (N�M+k)s�N TN�M+k ;10



 MN;s = 2M�1Xk=1 kp2M2+2(M�k)2 cos (N�M+k)(2s�1)�2N TN�M+k + 2N�2MXk=N+M cos k(2s�1)�2N Tk++ 4M�1Xk=1 4M�kp8M2+2(k�2M)2 cos (2N�2M+k)(2s�1)�2N T2N�2M+k ; MN;2p;s = 2M�1Xk=�2M+1 2M�jkjp2M2+2(M�jkj)2 cos �(k �M) (2s�1)�4M � TN+(4p�1)M+k ; MN;2p�1;s = 2M�1Xk=�2M+1 2M�jkjp2M2+2(M�jkj)2 sin �(k � 3M) (2s�1)�4M � TN+(4p�3)M+k ;and  MN;2��1;s = 2M�1Xk=1 kp2M2+2(M�k)2 cos k(2s�1)�8M Tk ++ 2N�2MXk=2N�3M cos k(2s�1)�8M Tk ++ 4M�1Xk=1 4M�kp8M2+2(k�2M)2 cos (2N�2M+k)(2s�1)�8M T2N�2M+k :With appropriate choices of N andM given by successive doubling of certain initialN andM , the pairwise orthogonal wavelet packet functions just described can be used to de�nean orthogonal Schauder basis for C[�1; 1] consisting of polynomials of optimal degree atmost n(1+ �). For this construction, the initial values of N and M are determined by thegiven value of �. We have mentioned this problem already in the introduction; the detailsare given in Kilgore, Prestin, and Selig [5].References[1] Depczynski, U. (1995): Konstruktion von waveletartigen Zerlegungen auf kompak-ten Intervallen mit Hilfe der Eigenl�osungen Sturm-Liouvillescher Randwertprobleme,Dissertation Universit�at-Gesamthochschule Duisburg.[2] Depczynski, U. and Jetter, K. (1996): Multiscale decompositions on the intervalbased on DCT-I transforms, Preprint SM-DU-320, Universit�at-GesamthochschuleDuisburg.[3] Fischer, B. and Prestin, J. (1996): Wavelets based on orthogonal polynomials,Preprint 96/1, Universit�at Rostock. 11
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