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Abstract

We discuss wavelet-oriented ideas to construct bases of algebraic polynomials.
In particular, the splitting in the frequency domain is extended in order to define
wavelet packets.
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1 Introduction

We show here how algebraic polynomials on the interval [—1, 1] can be treated as wavelets
and can be handled by wavelet techniques. Benefits include the potential for computa-
tional efficiency and accuracy in applications, for example to approximation problems.
Theoretical developments also follow from systematic development and exploitation of
orthogonality and from a generalization of the concept of shift invariance, which allow the
application of the wavelet techniques on the interval. We will give here some of the basic
ideas and techniques used in the wavelet approach to polynomials, which is also related to
an important application, the construction of a series of mutually orthogonal polynomials
of “optimal degree.”

As the idea of wavelets originated in connection with signal analysis, let us look first at
the original setting. Signal analysis naturally involves a “time domain” and a “frequency
domain”. One splits the frequency domain dyadically into wavelet spaces, with dilations
and translations of a single function (mother wavelet) employed systematically to con-
struct bases for these spaces. Wavelet packet spaces are subspaces which in turn further
split the wavelet spaces, using smaller frequency ranges. In signal analysis, a function
(signal) is “time-localized” if it is relatively large in magnitude at a certain “time” and
relatively small otherwise. A “frequency-localized” function on the other hand is more or
less of a single frequency. In a manifestation of Heisenberg’s uncertainty principle, perfect
time localization and perfect frequency localization are mutually incompatible. Thus, one



goal in signal analysis is the construction of “time-frequency-localized” bases, involving a
balanced consideration of both domains. In a wavelet treatment of polynomials on [—1,1],
the time domain clearly should correspond to the underlying interval [—1, 1], while the fre-
quency domain should correspond more or less to the degree of involved monomials. More
precise statements and adaptations of this and of other concepts require more systematic
treatment.

Wavelet techniques for polynomials on the interval [—1,1] with respect to the Cheby-
shev weight have been developed in Kilgore and Prestin [4], in Tasche [12] and in Plonka,
Selig, and Tasche [7], where the generalized Chebyshev shift was discussed and applied to
the development of wavelets on the interval. An adaptation of the uncertainty principle
can be found in Rosler and Voit [10], which in turn could be applied to wavelets on [—1, 1]
analogous to Narcowich and Ward [6] and to Selig [11].

More recently, in Kilgore, Prestin, and Selig [5], wavelet techniques have been used to
show the existence of and to perform the construction of an orthogonal Schauder basis
of polynomials of optimal degree for the space C'[—1,1], where optimal degree signifies
that the nth polynomial in the basis is always of degree less than n(1 + ¢), for previously
given € > (. Here, the use of wavelet packets is precisely what is needed to construct
a polynomial basis in which the degree of the polynomials grows within the prescribed
limitations; as ¢ decreases, the dimension of the packet spaces decreases, and the number
of packet spaces into which a given wavelet space must be split increases. This basis
problem has a long history which is discussed in further detail in the paper [5].

Here, we will construct different wavelet bases and wavelet packet bases on the interval.
At first, we will define polynomial subspaces by means of bases with the most frequency
localization. Then, the idea of time-frequency-localized bases will be realized by building
finite linear combinations in order to obtain wavelets and wavelet packets as generalized
translates within each subspace.

The wavelet spaces as well as the wavelet packet spaces will be orthogonal; their
orthogonality is given with respect to the weighted inner product

() =2 [ elgte) 22

Hence, we use the orthogonal Chebyshev polynomials T, (x) = cosnarccos x (n € INy) for

which

2 forn =m =0,
(T, T) =% 1 forn =m >0, (1)
0 otherwise.

We will directly and explicitly describe the algebraic polynomials used in our wavelet
and wavelet packet bases by giving their Chebyshev expansions. Our examples are related
to the trigonometric Dirichlet kernel and the de la Vallée Poussin kernels and correspond-
ing shift-invariant spaces (see e.g. Privalov [9], and Prestin and Selig [8]).



Note that in our construction the Chebyshev polynomials can be replaced by other
polynomial systems orthonormal with respect to an arbitrary weight function w which
vield corresponding bases for L?. Having similar frequency localization in terms of the
involved orthonormal polynomials, the resulting polynomials will differ in their properties
of localization on [—1,1] according to the weight w which will be related to different
approximation properties of the bases. For the construction of the wavelets orthogonal
with respect to an arbitrary weighted inner product we refer to Depczynski and Jetter
[1, 2] and Fischer and Prestin [3]. However, results for the wavelet packets and the
uncertainty principles are still in progress. Therefore, we restrict ourselves here to the
Chebyshev weight and Chebyshev polynomials.

2  Wavelets and Wavelet Packets on [—1, 1]

Let N, M € IN be fixed, with N = 2" M for some n € IN, n > 2. Furthermore, let us
introduce, for any £ = 0,...,27 — 2, real coefficients

aty (k) (k=-M,... , M) and a9y (k) (k=-=2M,... ,2M).

With any fixed set of such coefficients, we define the following spaces of polynomials

Vil .= span ({T: k=0,...,N — M} U
U{a?w(k - M)TN—M+k + G?W(M — k)TN+M—k s k=1,.. .,M}),

W = span ({aS;(=k)Tvyr — aSy(K)Iy_g: kE=1,...,M —1}U
(T : k=N+M,....2N —2M} U
U{aSs (k — 2M) Ton—ansar + a0y (2M — k) Tongoni—p: k=1,...,2M}),

=z
I

W;\%Z ‘= Span ({aéj\zl(—k)TN+2M(g_1)+k - aéj\zl(k)TN+2M(g_1)_k k= 1, ceey M — 1} U
U{abs(k — M) T parae—tysr + @ (M — k)T gaserny—r : k=0,..., M}),
for{=1,...,27 -2, and

W%Q,,_l ;= span ({Cl]z\;_z(—k)TzN_4M+k — ajz\z_z(k)TzN_4M_k ck=1,.... M—-1}U
U{Ty: k=2N—-3M,... 2N —2M} U
U{agM(k — QM)TQN_2M+k + ClgM(QM — k)T2N-|—2M—k k= 1, ceey QM}) .

Given a general scheme for constructing the coefficients a;, it is then possible to
double repeatedly the values of M and N together. This successive doubling gives a
nested sequence of spaces V¥, a corresponding sequence of spaces W, and inside of
each space W} a set of subspaces W%l yenn ,W%Q,,_l .



Three relevant examples for the choice of the coefficients are the following, where for

Al (=1,...,20 -2

, 1, ~M<k<0,

(a) ajy (k) =
0, 0< k<M,
(b) ah(k) = 25, ~M<k<M,
(C) a%(k)zﬁv _MSkSMv

and a9,,(k) = a%;(k/2) for all —2M < k < 2M. Arisen from their trigonometric analogs,
example (a) yields functions related to the Dirichlet kernel whereas examples (b) and (c)
come from de la Vallée Poussin means and from an orthogonalization procedure applied
to translates thereof, respectively.

For the sake of good time localization for the wavelet and wavelet packet bases to be
constructed we generally suggest that the coefficients a,;(k) should decrease monotonically
with increasing k and should be normalized such that af,(—M) = 1.

Based on the examples (b) and (c), the following graphs represent the size of the
coefficients @, with respect to their distribution in the frequency domain (see also the
definition of the wavelet packet functions on page 6) and thus illustrate some of the many
possibilities for constructing the spaces W%g, for { =1,...,27 =1 and n = 2 (left) and
n =3 (right). The graphs for n = 2 also depict one doubling of N and M.

N =8M N =16M

Example (¢)

Now we study the spaces defined above and show that under certain conditions on the
coefficients they span
VAL = span ({T): k=0,...,2N —2M} U
U{agM(k — QM)TQN_2M+k + ClgM(QM — k)T2N-|—2M—k k= 1, ceey QM}) .



Theorem 2.1 For any real coefficients ai;(k) and a9,,(k), it holds that

Wuwy v, WL
and
Wi, ¢ Wi, Jor 0=1,..,27—1.
If
ajy (M) =0, forl=1,..,2"—2, 2)
then
Wi, L WA, for1 <l <ly<27—1,

and if moreover the coefficients satisfy for all { =0,...,27 — 2

(a5 (k)2 + (a5 (—K)* > 0, forall k=0,... , M, )
(a9 (E))? + (a9 (—=K))* > 0, forall k=0,... ,2M —1,
then we have
Vi =W e Wiy (4)
and
211
Wy = P Wil (5)
=1

PROOF. The inclusions V¥ U WY c VAY and W%g C W} follow directly from the
definition of the spaces.
Using (1) and (2) the orthogonality Vi L W{! and WY, L W{/, can be easily
checked. In particular, for ¢ = ¢, = {5 — 1 we obtain for any k=0,... . M — 1
(@b (—k)Twyante—i + ayy (k) Tvyantern » aby(B)Tnvganre—r — a5 (—k)Tnsonrers)
= alyy(—k) aS (k) (Tnsonre—r  Tvyonse—r) — (Tngantock s Tnyaniere))
= 0.

For |(; — (3] > 1 the orthogonality W3, L W}/, is evident.

Let us now prove (4) and (5). From (3) it follows that not both a,;(—k) and af,(k)
can vanish. Hence,

dimspan {aﬁw(—k)TN_FgMg_Hg — a?w(k)TN_FQMg_k .
kzl,...,M—l} = M-1
dim span {afw(k - M)TN-l—M(zé—l)-I—k + wa(M - k)TN+M(2Z-|—1)—k :
k=0,.... M} = M+1,
dimspan {a5,,(k — 2M)Ton_onrar + a5 (2M — E)Tonyons—k
k= 1,...,2M} = 2M.



Then, for the dimensions of the spaces we obtain
dimVy' = N+1, dimWy = N, dimWy, = 2M,
for{=1,...,2" — 2, and

dim Wy, = 4M.

Hence
dim VA = dim V¥ + dim W
and
27M—1
dimWy = Y dimWg/,.
/=1

Together with the imbedding and orthogonality relations this proves the assertion. O

Following [7] one can define scaling functions and wavelets in terms of Chebyshev
polynomials as generalized Chebyshev shifts of one function.
We define scaling functions for s = 0,... , N, by

1 N+M-1
qb]\N{S = = Ty+ ZCOS’“”T—I— Z aS;(k— N) COS’“—”Tk,
2 k=N—M+1
and wavelets, for s =1,... , N, by
N+M-1 2IN—2M
;/)]]\V{S = Z aS;(N — k) cos (25 1) Ty + Z 25 1 Ty +
k=N-M+1 k=N+M
AIN42M—1
+ Z a9y (k —2N) Cosw Ty .
k=2N—2M+1
In this paper we introduce corresponding wavelet packet functions, for p = 1,...,2771 — 1

and s =1,...,2M, by

N+(dp—3)M -1
¢%2p—178 = > aib (N + (4p — 4)M — k) sin k(2:]\—41)7r Ty +
k=N+(4p—5)M+1
N+(dp—1)M —1
+ Z a?\f[_l(k — N —(4p —2)M) sin ks l)m 245]\_41 =Ty,
k=N-+(4p—3)M
N+(dp—1)M —1
¢JA\{2p,s = Z ajz\f[_l(N + (4p —2)M — k) cos k(zi]\_j)w T, +
k=N-+(4p—3)M+1
N+(dp+1)M -1
+ Z (k N —4pM) cos E@s—Ur T

aM ’
k:N—|—(4p—1)M




and for s =1,... ,4M, by

IN-3M -1
M 27—-2 kE(2s—1)7
¢N,2W—1,s = Z ay (k—2N —4M) cos s Lk +
k=2N—5M+1
IN—2M -
2s—1)m
+ Z cos =55 — In +
k=2N—3M
IN4+2M -1
0 k(2s—1)m
+ Z asy(k—2N) cos (SM) Ton_r .
k=2N—2M+1

In order to illustrate their time localization, we have drawn corresponding functions
for the coefficients from the examples (a) and (b) for N = 128 and M = 16. The cor-
responding functions for the example (¢) are not shown; they would be quite similar to

those for (b).

Example (a) Example (b)
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Example (a) Example (b)
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Wavelet packet functions L/J%S&Lg

We can show that the functions defined above build bases of the previously defined
spaces.

Theorem 2.2 For N, M € IN, with N = 2""' M | we have

V]y = span{gb]\N{S: s=0,...,N},
wH¥ = span{;/)%s: s=1,...,N},
W%g = span {;/)]]\V{M: s=1,...,2M},

forl =1,...,2" =2, and
W]]V\{Qn—l = Span {¢%2n_175 S = 1, PN 74M} .

PROOF. Let us write the basis used in the definition of V¥ in the order given there as
a column vector v}, that is,

Q]\N4 = (TO s e TN—M7 a?w(l — M)TN—M-H + G?W(M — 1)TN+M—1 5
T
s @ (= DTy + (T, 2a5,(0)T)

Let us similarly represent the given basis of W} as a column vector wl! and the given
basis of W¥, as a column vector w,.
Nt Nt
Now we can write

N N

(Qb%,s) e = AN vy, ( J]vw,s)szl = Byw)

where
2 G0 — iy ks 2—0pon k(25— 1)m NN
Ay = ! " cos , By = = oS
2 N $,k=0 2 2N s=1,k=N+1

Also, for / =1,...,2" — 2, we have

2M M

(¢JA\{Z,5) 1 C]\N{Z QJ\N{Z ) (¢%2"—1,5)S:1 = C%znq w%znq )



where, for p=1,...,277t — 1,

Y

2 — 5k,N-|—4 M k(ZS — 1)7‘[‘
C]\ng = ( 5 P2 cos i

) 2M ,N+4pM

s=1,k=N+(4p—-2)M+1

sSin

2 AM

Y

2M N +(dp—2)M
ou (2 — Senbpz . k(25 — 1)7r) (4p=2)
r s=1,k=N+(4p—4)M+1

and

COS

v (27 0key k(25— D) AN
N2l 2 SM

s=1,k=2N—-4M+1

The proof of the theorem is now completed by noting that the regularity of these
matrices is well-known and follows directly from (see Tasche [12])

N N
ANy AT = (—m) ,
2 $,k=0

N N

BiBy = (TSM(Q - 5k,N))

s,k=1
and
M
(C%,?p)TC%,Qp = (C]\N{2p—1)TC]\N4,2p—1 = (M(Ss,k@ - 5k72M))§,k:1 :
O

Note that in the above proof the transformation matrices between corresponding bases
of the scaling function spaces, wavelet spaces, and wavelet packet spaces are given. The
transformation from one basis to another can also be carried out by use of fast algorithms

(cf. [12, 7]).

3 Orthogonal bases

Here we further impose orthogonality of the bases given in Theorem 2.2 . It turns out to
be guaranteed by a certain condition on the coefficients a¥;.

Theorem 3.1 If
aly (M) =0, fort=1,..,2"n—2, (6)
and
(af (k) + (ahy(—=K)* = 1 Jork=0,....M, (=0,...,27—2,
(@, (K))* + (a5 (k) = 1 fork=0,...,2M — 1,



then we have the orthogonality properties

1 + 55,0 + 55,]\7

5 , forr,s=0,...,N, (8)

(6N, » ONs) = NG

<¢%r,@/}%s>:N5m, forr,s=1,...,N, (9)

<¢%Z,r ) ¢]]\V{Z7S> = Mo, s fJoralll=1,...,2"—1 and r,s=1,...,2M ,
(10)

<¢%2,,_M , ;z;%z,,_l,g = 2MS$,, forr,s=1,...,4M. (11)

Notice the connection between the conditions (3) giving linear independence and (7)
giving orthogonality.
PROOF. For the proof, we will use the orthogonality properties (1) of the Chebyshev
polynomials Tj. In order to show (8), we note that

1 N=M k L
<¢]\N477’7 ¢Ns = 5 Z:: Osﬂcos%—l-
+ Mz (2M — k)* (N —kyrm (N —k)sm
vl C2M? 4 2(M — k) cos ~ cos v
L+ (=1 = krr ks
= —F+ Z COS —— COS ——
2 =1 N N
= 24 (=)™ + (_1)r+5 IRES k(r —s)m E(r+ s)m
- 4 + 9 & N + cos N
146
— N(;Mw7
' 2
where we used that
1 7’ L
2 ( + Z cos ﬂ = Né;omod2n -
The proof of (9) - (11) follows the same ideas. 0

The conditions (6) - (7) hold for our example (¢). For this special case, the functions
are

2M -1

1 N-M B .
qb]\N{s -3 To+ Z cos 5F Ty + Z \/2M22]-\|—42]]:4 DR - %-I—k) Tn-nrvk

10



2M -1 2N -2M

M N—M+k)(2s—1 k(25—1)7
;/;Nﬁ — Z \/2M2-|—2M e cos | 2]&( )7 Tn_nign + Z cos 2N) T+
k=N+M
4M ' ( ) )
AM -k IN—2M+k)(2s—1)m
+ > cos Ton—am+k
2 2N +5
= /M2 +2(k—2M)?
2M—1 i
M 2M -k 25— 1 s
UN2ps = > /2 2(M [k cos ((k M)=; ) TNt (ap-1)M+k 5
k=—2M+1
2M—1 i ( )
M 2M —|k . 25—1
77Z)]\7,2p—1,5 = Z \/2M2-|—2(M—|k|)2 S ((k - 3M) ) TN-I—(4p—3)M-|—k7
k=—2M+1
and
2M—1 ( :
M _ k(2s—1)m
77Z)]\7,277—1,5 - Z \/2M2-|—2 M—k)2 COos M Tk +
2N —2M " )
2s—1)m
+ Z cos =z T +
k=2N—-3M
ESh ( ) )
AM -k IN—2M+k)(2s—1)m
cos Ton— .
T Z \/8M242(k—2M)? &M 2N-2M+k

With appropriate choices of N and M given by successive doubling of certain initial N and
M the pairwise orthogonal wavelet packet functions just described can be used to define
an orthogonal Schauder basis for C[—1, 1] consisting of polynomials of optimal degree at
most n(1+¢€). For this construction, the initial values of N and M are determined by the
given value of e. We have mentioned this problem already in the introduction; the details
are given in Kilgore, Prestin, and Selig [5].
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