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In this paper we present algorithms to calculate fast Fourier transforms
and its adjoint on the rotation group SO(3) for arbitrary sampling sets. It
is based on the fast Fourier transform for nonequispaced nodes on the three-
dimensional torus. This algorithm evaluates the SO(3) Fourier transform
of B-bandlimited functions at M arbitrary input nodes in O(M + B4) or
even O(M +B3 log2B) flops instead of O(MB3). Numerical results will be
presented establishing the algorithm’s numerical stability and time require-
ments.
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1 Introduction

During the past years, several different techniques have been proposed for computing
Fourier transforms on the rotation group SO(3) motivated by a variety of applications,
like protein-protein-docking [4] or texture analysis [3, 28]. Many of these algorithms are
based on discrete Fourier transforms on the two-dimensional sphere and a generalization
thereof.
In this paper the algorithm to compute a SO(3) Fourier transform is based on evaluating
the Wigner-D functions Dmn

l , which yield an orthogonal basis of L2(SO(3)). Using these
functions we expand B-bandlimited functions f ∈ L2(SO(3)) into the sum

f =
B∑

l=0

l∑
m=−l

l∑
n=−l

f̂mn
l Dmn

l . (1.1)
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We will present an algorithm for the efficient and accurate calculation of such B-band-
limited functions f ∈ L2(SO(3)) at arbitrary samples gq ∈ SO(3), for q = 0, . . . ,M − 1
outlining that the above sum is the discrete Fourier transform of a function defined on
the rotation group. Moreover we will also present the adjoint transform to the sum
above pointing out that it has indeed the potential to efficiently compute inverse SO(3)
Fourier transforms, as well.
By splitting up the Wigner-D functions Dmn

l (g) where g = g(α, β, γ) ∈ SO(3) in three
components depending on one Euler angle (see Definition 2.1) each as

Dm,n
l (g) = e−imαe−inγdm,n

l (cosβ)

we use the nonequispaced fast Fourier transform (NFFT) algorithm (see e.g., [8, 2, 23]
and [14] for the implementation of both algorithms). Based on the fast polynomial
transform, (cf. e.g., [7, 21]) we develop an algorithm for transforming sums of Wigner-d
functions dm,n

l quickly into sums of Chebyshev polynomials. The actual transform will
then become a trivariate nonequispaced fast Fourier transform on the torus.
Putting together our efforts the SO(3) Fourier transform will be sped up from O(MB3)
flops to O(M + B4) and under certain circumstances even to O(M + B3 log2B) flops,
with B being the bandwidth and M the number of input nodes which is independent
from the bandwidth. Nevertheless, a typical size of M would be O(B3).
Other approaches to compute function values at specially structured, i.e., equispaced
grids on SO(3) using SO(3) Fourier transforms can be found in [16] and [26]. Although
we used the same separation of variables based technique as the authors of [16] they
split their transform differently into a bivariate FFT and a direct recursive evaluation
of Wigner-d functions. In contrast [26] describes how to expand the Wigner-d functions
directly into a Fourier sum and thus evaluating a quadruple sum by means of an FFT.
Both works describe O(B4) algorithms while the authors of [16] point out that their
algorithm has the potential to be a O(B3 log2B), as well. They mention problems
in stability and a trade-off between accuracy and time requirements that occur using
the fast O(B3 log2B) approach as the reason to decide for the slower algorithm. We
will address these stability issues in our paper as we encountered them as well in our
numerical experiments.

Our paper is structured as follows. We begin with a short introduction to the group
SO(3) including Euler angles and sampling on SO(3). Important properties of the
Wigner-D functions Dmn

l as well as normalization and relation to functions known from
harmonic analysis on the two-dimensional sphere are outlined briefly. We then present
an approach to the SO(3) Fourier transform for B-bandlimited functions f ∈ L2(SO(3))
at M arbitrary nodes gq ∈ SO(3). Following this, the adjoint transform which is of
independent interest is described.
Introducing the matrix-vector notation f = Df̂ for the transform (1.1) we split up
the computation of the whole transform into three steps f = Df̂ = FAWf̂ where
f contains the M function samples f(gq), f̂ the SO(3) Fourier coefficients f̂mn

l and
D = {Dmn

l (gq)} is a matrix containing Wigner-D functions evaluated at the given
sampling nodes. The corresponding matrices F ,A and W will be discussed in the
following subsections. The first step, the multiplication by the matrix W represents
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the Wigner-d transform which is discussed in Section 3.1. There the transform itself is
explained as well as a fast algorithm in Section 3.2. Here, the derivation of a modified
three-term recurrence relation plays an important role. We will also address stability
issues in this section.
The following section deals with an intermediate step, the multiplication by the matrix
A, transforming Chebyshev sums into trigonometric sums. Moreover we consider the
whole SO(3) Fourier transform in Section 3.4 using the NFFT to handle the computation
represented by the nonequispaced Fourier matrix F . Again, also the adjoint transform
is considered briefly. Additionally, Section 3.5 applies our algorithm to the equispaced
SO(3) Fourier transform setting by using a Clenshaw-Curtis quadrature rule in our
adjoint transform. This gives a brief example on how the evaluation of SO(3) Fourier
coefficients from function samples can be accomplished. Finally, in Section 4 we present
time and error estimates of our implementations for the Wigner transform and the SO(3)
Fourier transforms. We will address once more the mentioned stability issues, compute
an equispaced SOFT to test the quadrature rule from Section 3.5 and end with a short
conclusion.

parameterize complete name complexity reference
FFT Fast Fourier Transform O(Bd logB) [9]
NFFT Nonequispaced Fast Fourier O(M +Bd logB) [14]

Transform
SOFT (Equispaced) SO(3) Fourier O(B4), M = (2B)3 [16]

Transform
NFSOFT Nonequispaced Fast SO(3) O(M +B3 log2B) Sect. 3.4

Fourier Transform
NDSOFT Nonequispaced Discrete SO(3) O(MB3) (3.2)

Fourier Transform
FWT Fast Wigner Transform O(B log2B) Sect. 3.2
DWT Discrete Wigner Transform O(B2) Sect. 3.1

Table 1.1: A list of the transforms mentioned in this paper with references and their
asymptotic complexities depending on the bandwidth B and the number of
input nodes M .

Note the following naming conventions, that are used throughout the paper. The
computation of function samples from SO(3) Fourier coefficients, i.e., the synthesis step
will be called the SO(3) Fourier transform while the computation of SO(3) Fourier
coefficients from function samples is the inverse transform. For some special sampling
sets one can use quadrature rules in order to compute the SO(3) Fourier coefficients with
the help of the adjoint SO(3) Fourier transform (see Section 3.5). We avoid the name
analysis for this transform, since in the nonequispaced setting the adjoint transform is
not the inverse transform, i.e., the evaluation of SO(3) Fourier coefficients from function
samples. Note that two different types of inverse transforms were considered in [10] and
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[29]. These inverse transforms based on our SO(3) Fourier transform as well as on the
adjoint SO(3) Fourier transform.

2 Preliminaries

2.1 The Rotation Group SO(3)

An orthogonal matrix R ∈ R3×3 with determinant det(R) = 1 can be identified with
a rotation in R3. It is an orientation-preserving orthogonal transformation and can be
interpreted as the circular movement of an object in R3 by an angle about a fixed axis.
The set of all such matrices {R ∈ R3×3 : det(R) = 1, RTR = I3} constitutes the special
orthogonal group SO(3). There are various ways to parameterize this group [31, Sect.
1.4]. We use one variant of the well known Euler angles.

Definition 2.1 Given three angles α, γ ∈ [0, 2π) and β ∈ [0, π], the corresponding
rotation R(α, β, γ) is given by

R(α, β, γ) = RZYZ(α, β, γ) = RZ(α)RY(β)RZ(γ)

where

RZ(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , RY(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


denote rotations about the z- and y-axis, respectively.

In the literature there are different conventions for choosing these angles. Most com-
monly we find the ZXZ- and the ZYZ-convention where the Euler angles denote a se-
quence of rotations about the z, x, z-axes or the z, y, z-axes respectively. The two repre-
sentations can be transformed into each other as

RZYZ(α, β, γ) = RZXZ(α+ π/2, β, γ − π/2).

Throughout this paper we will use the ZYZ-convention, identifying an element g ∈ SO(3)
with g(α, β, γ) = RZYZ(α, β, γ). For the sake of simplicity, we will also denote functions
f : SO(3) → C by

f(g(α, β, γ)) = f(α, β, γ).

2.2 A basis for L2(SO(3))

We now consider the Hilbert space L2(SO(3)) with the inner product of two functions
f1, f2 ∈ L2(SO(3)) given by

〈f1, f2〉 =
∫

SO(3)
f1(g)f2(g) dg

=
∫ 2π

0

∫ π

0

∫ 2π

0
f1(α, β, γ)f2(α, β, γ) sin(β) dαdβdγ (2.1)
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and the corresponding norm ||f ||L2(SO(3)) =
√
〈f, f〉.

In this section we introduce the Wigner-D and Wigner-d functions. They play a major
role in Fourier analysis on SO(3). The Wigner-D functions Dm,n

l (g) are the eigenfunc-
tions of the Laplace operator for SO(3). When parameterizing these eigenfunctions in
Euler angles we obtain an explicit expression for the Wigner-D functions (see [5, Sect.
9]). They are given for |m|, |n| ≤ l ∈ N0 by

Dm,n
l (α, β, γ) = e−imαe−inγdm,n

l (cosβ) (2.2)

where

dm,n
l (x) =

(−1)l−m

2l

√
(l +m)!

(l − n)!(l + n)!(l −m)!

√
(1− x)n−m

(1 + x)m+n

dl−m

dxl−m

(1 + x)n+l

(1− x)n−l
(2.3)

are called Wigner-d functions. They satisfy the orthogonality condition∫ π

0
dm,n

l (cosβ)dm,n
l′ (cosβ) sinβ dβ =

1
l + 1

2

δll′ . (2.4)

Wigner-d as well as Wigner-D functions generalize functions that are known from har-
monic analysis on the sphere S2, e.g.,

d0,−n
l (x) = Pn

l (x) =
1

2ll!

√
(l − n)!
(l + n)!

√
(1− x2)n

dl+n

dxl+n
(x2 − 1)l (2.5)

where Pn
l denotes the associated Legendre functions. Due to (2.5) the Wigner-d functions

are also called generalized associated Legendre functions. We now obtain immediately
the relation between Wigner-D functions Dm,n

l (α, β, γ) and spherical harmonics Y n
l as

Y n
l (ξ) = Y n

l (β, γ) =

√
2l − 1

4π
einγd0,n

l (cosβ) = (−1)δn|n|

√
2l − 1

4π
D0,−n

l (α, β, γ)

where (β, γ) ∈ [0, π]× [0, 2π) are the polar coordinates of the point ξ ∈ S2. As a result
of this relationship Wigner-D functions are sometimes also called generalized spherical
harmonics (cf. e.g. [3]). Note that subsequently we will simplify Dm,n

l = Dmn
l as well

as dm,n
l = dmn

l when there is no possibility for confusion.
By means of the Peter-Weyl-Theorem (cf. [32, Sect. 3.3] for details) the harmonic spaces

Harml(SO(3)) = span {Dmn
l : m,n = −l, . . . , l}

spanned by the Wigner-D functions satisfy

L2(SO(3)) = closL2

∞⊕
l=0

Harml(SO(3)).
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Hence the collection of Wigner-D functions {Dmn
l (g) : l ∈ N0,m, n = −l, . . . , l} forms

an orthogonal set in L2(SO(3)). Moreover we define the function spaces

DB =
B⊕

l=0

Harml(SO(3))

for arbitrary B ∈ N. The dimension of these spaces is given by

dim(DB) =
B∑

l=0

(2l + 1)2 =
1
3
(B + 1)(2B + 1)(2B + 3). (2.6)

We define an ordered set of indices

IB = {(l,m, n) : l = 0, . . . , B;m,n = −l, . . . , l} (2.7)

corresponding to all sets of admissible indices (l,m, n) within the space DB. Throughout
this paper we keep a particular order of the indices fixed.
The Wigner-D functions Dmn

l are not normalized with respect to the inner product (2.1)
but for all g ∈ SO(3) they satisfy

‖Dmn
l (g)‖2

L2(SO(3)) =
4π2

l + 1
2

.

Every element f ∈ L2(SO(3)) has a unique series expansion in terms of the Wigner-D
functions

f(g) =
∞∑
l=0

l∑
m=−l

l∑
n=−l

f̂mn
l Dmn

l (g), (2.8)

where g ∈ SO(3) and the SO(3) Fourier coefficients f̂mn
l are given by the integral

f̂mn
l =

l + 1
2

4π2
〈f,Dmn

l 〉. (2.9)

For approximation purposes we are dealing with B-bandlimited functions f ∈ DB which
can be written as their own finite Fourier partial sum

f(g) =
∑

(l,m,n)∈IB

f̂mn
l Dmn

l (g). (2.10)

The fast evaluation of (2.10) for a set of samples g ∈ SO(3) is the main subject of this
paper.
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3 Discrete Fourier Transforms on SO(3)

From now on we restrict ourselves to B-bandlimited functions f ∈ DB. These functions
will be evaluated at a certain number of arbitrary sampling nodes gq = (αq, βq, γq) from
a not necessarily equispaced sampling set

XM = {(αq, βq, γq) : q = 0, . . . ,M − 1} (3.1)

where 0 ≤ αq, γq < 2π and 0 ≤ βq ≤ π are Euler angles. The Fourier sum (2.8) of a
B-bandlimited function f ∈ DB reads as

f(αq, βq, γq) =
∑

(l,m,n)∈IB

f̂mn
l Dmn

l (gq) =
B∑

l=0

l∑
m=−l

l∑
n=−l

f̂mn
l Dmn

l (αq, βq, γq) (3.2)

for q = 0, . . . ,M − 1. The evaluation of this finite triple sum where the complex-valued
SO(3) Fourier coefficients f̂mn

l ∈ C are given will be called the nonequispaced discrete
Fourier transform on the rotation group (NDSOFT).
Using this sum we can synthesize non-equispaced samples of a function f of which we
know its SO(3) Fourier coefficients f̂mn

l . If on the other hand one has given M samples
f(αq, βq, γq) of a function f and seeks to compute SO(3) Fourier coefficients f̂mn

l from
them an iterative algorithm is needed. As we only know samples of the function f we
can use quadrature rules for this integral. In general we do not know the quadrature
rule for an arbitrary set of sampling nodes in SO(3) (see [29]). By computing

f̃mn
l =

M−1∑
q=0

f(αq, βq, γq)Dmn
l (αq, βq, γq) (3.3)

for all admissible (l,m, n) ∈ IB we obtain coefficients f̃mn
l out of the given samples.

In general f̃mn
l 6= f̂mn

l holds. We will call the evaluation of the sum (3.3) the adjoint
NDSOFT. To get a inverse transform to (3.2) we would need additional weights to be
included in the sum. If we found a quadrature rule associated to the sampling set XM

we could compute

f̂mn
l =

M−1∑
q=0

uB
q f(αq, βq, γq)Dmn

l (αq, βq, γq) (3.4)

where uB
q would be quadrature weights depending on the bandwidth B for q = 0, . . . ,M−

1. This inverse transform could analyze the SO(3) Fourier coefficients out of given
samples. We will give a an example of a suitable quadrature rule for a special sampling
set in Section 3.5. The more general case where we use arbitrary points and determine
the corresponding quadrature rules first is beyond the scope of this paper and will be
considered in future work.
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Remark 3.1 In the following we point out some applications of the SO(3) Fourier trans-
form as well as the adjont transform. First note that these transforms are instrumental
when it comes to iterative algorithms that might lead to an inverse Fourier transform
without knowing a quadrature rule explicitly or in case we want to use interpolation.
Examples for these iterative methods are CGNE or CGNR algorithms that have been
proposed for the SO(3) in [29] and [10].
In further applications that are based on the convolution theorem one obtains immedi-
ately the SO(3) Fourier coefficients, from the spherical Fourier coefficents on the two-
sphere (see e.g. [19, Eq.(8)] and [18]) and one is interested in the evaluation of the
function on SO(3).
In both applications mentioned in the introduction, protein-protein-docking [4] and tex-
ture analysis [28] one indeed just needs the SO(3) Fourier transform and its adjoint
transform.

For instance in texture analysis one is interested in computing the so-called kernel
density function

f(qd) =
K∑

k=1

ckψ(qdg
−1
k )

at arbitrary nodes qd ∈ SO(3) for given coefficients ck ∈ C. By using the Wigner-D
functions one can separate the source nodes gk ∈ SO(3), k = 1, . . . ,K, from the target
nodes qd, d = 1, . . . , D, as

f(qd) ≈
B∑

l=0

l∑
m,n=−l

ψ̂(l)

(
K∑

k=1

ckD
mn
l (gk)

)
Dmn

l (qd)

where ψ̂(l) are the known Fourier-Legendre coefficients of the kernel ψ. What we see in
the inner brackets is an adjoint (not inverse) SO(3) Fourier transform for given coeffi-
cients ck and a SO(3) Fourier transform for the outer sums. This problem is considered
in [13].
Another application in texture analysis where one has to compute values on the SO(3)
from the SO(3) Fourier coefficients was discussed in [12, Lemma 2.4, Theorem 2.7] in
order to invert the Radon transform.

Let us now consider the NDSOFT (3.2) from an algebraic point of view. According
to (2.6) we are dealing with 1

3(B + 1)(2B + 1)(2B + 3) Fourier coefficients f̂mn
l . These

coefficients are mapped onto M sampled function values of a function f ∈ DB. The
NDSOFT can thus be represented in matrix-vector notation as

f = Df̂ (3.5)

where the vector f = (f(g))g∈XM
∈ CM contains the sampled function values of f , and

the vector f̂ = (f̂mn
l )(l,m,n)∈IB

∈ C
1
3
(B+1)(2B+1)(2B+3) contains the Fourier coefficients

for all triples from the set of indices IB (see (2.7)). The matrix

D = (Dmn
l (αq, βq, γq))(αq ,βq ,γq)∈XM ;(l,m,n)∈IB

∈ CM× 1
3
(B+1)(2B+1)(2B+3)
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will be called the nonequispaced SO(3) Fourier matrix.
The calculation of the adjoint problem (3.3) is realized by a matrix-vector multiplication

f̃ = DHf .

Provided there is a known quadrature rule matching the given sampling set, the inverse
problem would yield

f̂ = DHUf

where f̂ ,f and D are the same as in (3.5) and U ∈ CM×M is a diagonal matrix contain-
ing the quadrature weights uB

q . In cases where we do not have a matching quadrature
rule (e.g. there are less function samples than Fourier coefficients) and we want to apply
interpolation we still need the adjoint NDSOFT (cf. Remark 3.1 and [10]).
Let us analyze the computational complexity of computing the NDSOFT naively via
the matrix-multiplication (3.5). Owing to the size of D, the asymptotic complexity for
evaluating the NDSOFT of a B-bandlimited function f ∈ DB at M nodes would be
O(MB3) flops. Analogously the adjoint transform in (3.3), i.e., the multiplication of the
sample vector f with DH requires O(MB3) operations as well.
Note that the number of nodes M solely depends on the sampling set not on the band-
width B although typically M is of order O(B3). The lower bound of the algorithm
is given by the number of input values of which there are O(M + B3) consisting of
O(B3) Fourier coefficients and O(M) nodes. We will not achieve this lower bound but
approach it with O(M + B3 log2B) flops. This will be accomplished by generalizing
different algorithms. In particular we will adopt an algorithm which has been presented
in [17] for the two-dimensional sphere and combine it with the separation of variables
technique from [16]. In the following sections we will describe how to split up the ND-
SOFT (3.5) such that we can use the NFFT [14, 23] on one hand and a fast polynomial
transform [7, 21] on the other hand for its evaluation. We start by focusing on the latter.

3.1 Discrete Wigner Transform

In this section we are dealing with the Wigner-d functions dmn
l as they are the main

source for the high computational complexity with O(B) flops needed for their evalua-
tion. One important feature we will use is the orthogonality of the Wigner-d functions
dmn

l . Since they are orthogonal functions in the sense of (2.4) they can be described
not only by their Rodrigues formula given in (2.3) but also by a three-term recurrence
relation that reads for |m|, |n| ≤ l as

dmn
l+1(x) = (umn

l x+ vmn
l )dmn

l (x) + wmn
l dmn

l−1(x), x = cos θ, (3.6)
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with the recurrence coefficients given by

umn
l =

(l + 1)(2l + 1)√
((l + 1)2 −m2)((l + 1)2 − n2)

,

vmn
l =

−mn(2l + 1)
l
√

((l + 1)2 −m2)((l + 1)2 − n2)
,

wmn
l =

−(l + 1)
√

(l2 −m2)(l2 − n2)
l
√

((l + 1)2 −m2)((l + 1)2 − n2)

where we set dmn
l (x) = 0 for all l < max(|m|, |n|) (cf. [31, Sect. 4.3]).

For the evaluation of this three-term recurrence relation we can now employ the Clen-
shaw algorithm e.g., [25, pp. 184]. Although it decreases the memory requirements as
compared with the naive matrix multiplication from (3.5) it is still too slow for most
applications as it does not reduce the computational complexity of O(MB3) flops in
total. This recursive evaluation however will be used in the discrete Wigner transform
(DWT) which will be described now.
The aim of the DWT is to transform a linear combination of Wigner-d functions dmn

l

from (2.3) into a linear combination of Chebyshev polynomials of the first kind Tl.
We will take advantage of the fact that Wigner-d functions are similar to the associated
Legendre functions that are the subject of [17]. In fact they are a generalization of those
functions as mentioned before in (2.5).
From (2.3) it can be seen that for m+ n even the Wigner-d functions dmn

l (x) are poly-
nomials of degree at most l whereas for odd m + n they have to be transformed into
polynomials of degree l− 1 by multiplying them with (1−x2)−1/2. Performing a change
of the polynomial basis we get the following Chebyshev coefficients tmn

l from the input
coefficients f̂mn

l by computing

B∑
l=max(|m|,|n|)

f̂mn
l dmn

l (cos θ) =



B∑
l=0

tmn
l Tl(cos θ) for m+ n even,

sin θ
B−1∑
l=0

tmn
l Tl(cos θ) for m+ n odd,

(3.7)

at nodes θ ∈ XC on the equispaced grid XC =
{

(2k+1)π
2(B+1) : k = 0, . . . , B

}
where m,n are

fixed and Tl(cos θ) = cos lθ are Chebyshev polynomials of degree l.

Definition 3.2 For fixed orders m and n the change of basis given in equation (3.7)

from the vector of SO(3) Fourier coefficients f̂
mn

=
(
f̂mn
max(|m|,|n|), . . . , f̂

mn
B

)T
to the

vector of Chebyshev coefficients tmn = (tmn
0 , . . . , tmn

B )T is described by the matrix W mn ∈
C(B+1)×(B−max(|m|,|n|)) through

tmn = W mnf̂
mn
.
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Lemma 3.3 The matrix W mn given in Definition 3.2 can be separated into

W mn =

{
TD̃

mn
for m+ n even,

S−1TD̃
mn

for m+ n odd
(3.8)

where

T =
(

2− δ0k

B + 1
cos

(2l + 1)k π
2(B + 1)

)
k,l=0,...,B

,

D̃
mn

=
(
dmn

l (cos
(2k + 1)π
2(B + 1)

)
)

(k=0,...,B);(l=max(|m|,|n|),...,B)

and

S = diag
(

sin
(q + 1)π
B + 2

)
q=0,...,B

.

Proof. We consider the B + 1 nodes of an equispaced grid XC . For these nodes the
matrix-vector notation of equation (3.7) reads as

D̃
mn

f̂
mn

=

{
T−1tmn for m+ n even,
T−1Stmn for m+ n odd

where f̂
mn
, tmn,S, and D̃

mn
are defined as in Lemma 3.3. A simple calculation shows

that the inverse of T is given by

T−1 =
(

cos
(2k + 1)l π
2(B + 1)

)
k,l=0,...,B

.

Since S is also a nonsingular matrix we obtain the unique solution of

tmn = TD̃
mn

f̂
mn

= W mnf̂
mn

for even orders m+ n, and

tmn = S−1TD̃
mn

f̂
mn

= W mnf̂
mn

for odd orders m+ n. �
Note that the matrix-vector multiplication D̃

mn
f̂

mn
will be computed recursively in

O(B2) steps with the Clenshaw algorithm using (3.6) for fixed m and n. Neither the
multiplication by T−1 which is realized with the discrete cosine transform (DCT) from
[1] in O(B logB) flops nor the multiplication by the diagonal matrix S increases the
asymptotic complexity. Thus the total complexity of the DWT, i.e., a multiplication by
tmn = W mnf̂

mn
is O(B2). As there are (2B+1)2 vectors tmn to be computed the total

complexity of the whole transformation step sums to O(B4) flops.
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3.2 Fast Wigner Transform

In this section we outline how to speed up the DWT by adopting the fast polynomial
transform together with the stabilization presented in [22]. Other stabilization methods
for the fast spherical harmonic transform were presented in [30, 11]. Our resulting
algorithm will be referred to as the fast Wigner transform (FWT).
Our aim is the efficient computation of matrix-vector multiplications using the matrices
W mn for all m,n = −B, . . . , B. Lemma 3.3 shows that we can split W mn into a product
of the matrices T ,S−1 and D̃

mn
. As S is a diagonal matrix a multiplication by S can

be computed in O(B) flops. The effect of matrix T can be computed by means of the
DCT in O(B logB) flops. What remains to be done is to employ a fast algorithm for
the transform represented by the matrix D̃

mn
.

A simple but powerful idea is to modify the three-term recurrence relation from (3.6) by
defining the Wigner-d functions for |m|, |n| > l as well. Note that this is the important
step, which allows us to realize the fast Wigner-d transform in a stable way. This
technique has been described in [22] as a key step in the development of a stable fast
spherical Fourier transform. By that trick we obtain for m,n = −B, . . . , B and l =
0, . . . , B for arbitrary B ∈ N0 an extended three-term recurrence formula

dmn
l+1(x) = (αmn

l x+ βmn
l )dmn

l (x) + γmn
l dmn

l−1(x), x = cos θ, (3.9)

where for µ = min(|m|, |n|) and ν = max(|m|, |n|) the recurrence coefficients read as

αmn
0 =


1 for m = n,

−1 for m+ n even, m 6= n,

0 otherwise,

αmn
l =


(−1)m+n+1 for 0 < l ≤ ν − µ,
mn
|mn| for ν − µ < l < ν,

umn
l for ν ≤ l,

βmn
l =


1 for 0 ≤ l < ν,

0 for m = n = 0,
vmn
l otherwise

and γmn
l =

{
0 for l ≤ ν,

wmn
l otherwise,

using umn
l , vmn

l and wmn
l , the recurrence coefficients from (3.6). To start the recurrence

for all m,n = −B, . . . , B we set dmn
−1 = 0 and with λmn =

√
(2µ)!

2µµ! we obtain

dmn
0 (x) =

{
λmn for m+ n even,
λmn

√
1− x2 for m+ n odd.

The FWT will exploit the concepts of the fast polynomial transforms as it performs
a change of basis replacing the Wigner-d functions with Chebyshev polynomials of the
first kind. Following [17] we perform the fast polynomial multiplication based on discrete
cosine transforms (DCT).
For this we derive associated Wigner-d functions dmn

l (·, c) with a shift parameter c ∈ N0

12



by

dmn
−1 (x, c) = 0,
dmn

0 (x, c) = 1,
dmn

l+1(x, c) = (αmn
l+c x+ βmn

l+c)d
mn
l (x, c) + γmn

l+cd
mn
l−1(x, c). (3.10)

Instead of only one step as in the modified recurrence (3.9) we will now shift the degree
l of dmn

l by c ∈ N0 steps using the result of the following Lemma.

Lemma 3.4 Let B ∈ N0, m,n = −B, . . . , B and c, l = 0, . . . , B and let the functions
dmn

l and dmn
l (· · · , c) be given as in (3.9) and (3.10), respectively. We then obtain

dmn
l+c(x) = dmn

c (x, l)dmn
l (x) + γmn

l dmn
c−1(x, l + 1)dmn

l−1(x).

Proof. The proof is done by induction over c.

On these functions we perform the fast polynomial transform that has been described
in [17] and [7] for the sphere S2. Applying their algorithms we can speed up our DWT
from O(B2) to only O(B log2B) flops per set of orders m,n. For all O(B2) different sets
of orders m,n we obtain a total complexity of O(B3 log2B) flops for all FWTs instead
of the previous O(B4) flops for all DWTs.
When using exact arithmetic the algorithm is exact. But when computing in finite pre-
cision small errors introduced by the DCT algorithm cause numerical instabilities (cf.
[24]) as they are multiplied with large function values of the associated Wigner-d func-
tions dmn

c (x, l) for |x| ≈ 1 at certain admissible triples (c,m, n) ∈ IM .
The algorithms mentioned above use a cascade summation to compute the polynomials.
An effective approach to improve the stability of this summation has been developed
in [22]. The authors replace a standard multiplication step in the cascade built by the
algorithm with a stabilization step whenever the functions to be transformed exceed
a certain threshold κ. This corresponds to removing the critical polynomial from the
cascade, dealing with it separately and inserting it again at the very end. In a scenario
were every single polynomial is removed from the cascade we would get back exactly the
slow DWT algorithm.
The algorithmic details on this method as well as its implementation for associated Leg-
endre functions can be found in [17] and [14], respectively. This method can be directly
applied to the Wigner-d functions as they show the same behavior.
Although we now have a method to improve the stability of our computation its applica-
tion will increase the runtime of the algorithm. So far we do not know an upper bound
for the number of stabilization steps with respect to the bandwidth B for a given thresh-
old κ and thus the asymptotical complexity of the stabilized FWT. However numerical
experiments have been conducted and their results are shown in Section 4. They support
the conjecture that although the stabilized FWT is slower than the unstabilized version
with O(B log2B) flops it is still asymptotically faster than the DWT with O(B2) flops.

Remark 3.5 As mentioned in the introduction, SO(3) Fourier transforms arise as a
generalization of spherical Fourier transforms. That means apart from the polynomial
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cascade we could have used other algorithms for transforming the polynomial part of our
SO(3) basis functions after applying the DCT to them. Indeed we find other works that
deal with other techniques to compute spherical harmonic expansions, like [20, 30, 11, 27].
We suppose that these approaches can also be extended for the NFSOFT.

3.3 An intermediate step

The FWT generates Chebyshev coefficients tmn
l from the SO(3) Fourier coefficients f̂mn

l

as seen in (3.7). Yet another change of basis needs to be done. Our aim is to obtain
suitable coefficients for a trivariate Fourier transform. Thus we need to find coefficients
hmn

l which satisfy
B∑

l=0

tmn
l Tl(cosβ) =

B∑
l=−B

hmn
l e−ilβ (3.11)

for m+ n even and

sinβ
B∑

l=0

tmn
l Tl(cosβ) =

B∑
l=−B

hmn
l e−ilβ (3.12)

for m + n odd. For fixed orders m and n the change of basis from the Chebyshev
coefficients tmn = (tmn

0 , . . . , tmn
B )T to the Fourier coefficients hmn = (hmn

−B, . . . , h
mn
B )T

given in equations (3.11) and (3.12) is described by the matrix Amn ∈ C(2B+1)×(B+1)

through
hmn = Amntmn.

To obtain an explicit expression for the matrix Amn we first consider the slightly easier
case in which m+ n is even. By cos lβ = 1

2(eilβ + e−ilβ) we obtain

B∑
l=0

tmn
l Tl(cosβ) =

B∑
l=0

tmn
l cos lβ =

1
2

(
tmn
0 +

B∑
l=−B

tmn
|l| eilβ

)
.

Setting

hmn
l =


0 for |l| = M − 1,M,

tmn
0 for l = 0,
1
2 t

mn
|l| otherwise,

(3.13)

we achieve the desired change of basis. For arbitrary but fixed orders m and n this
transformation can be written in matrix-vector-notation as

Hmn =



1
2

�
1
2

1
1
2

�
1
2


∈ C(2B+1)×(B+1). (3.14)

14



Hence hmn = Hmntmn for m+ n even. In the case of m+ n odd, we obtain

sinβ
B−1∑
l=0

tmn
l Tl(cosβ) = sinβ

B−1∑
l=0

tmn
l cos lβ =

sinβ
2

(
tmn
0 +

B∑
l=−B

tmn
|l| eilβ

)
.

It remains to convert sinβ = i
2(e−iβ − eiβ) and to replace the tmn

l according to (3.13)
which yields

sinβ
B−1∑
l=0

tmn
l Tl(cosβ) =

B∑
l=−B

i
2
(hmn
|l+1| − hmn

|l−1|)e
ilβ.

In other words, we need to multiply the matrix Hmn with

Omn =
i
2


0 1

−1
. . . . . .
. . . . . . 1

−1 0

 ∈ C(2B+1)×(B+1).

which yields hmn = OmnHmntmn for m+n odd. All in all the matrix Amn is composed
as follows

Amn =

{
Hmn for m+ n even,
OmnHmn for m+ n odd.

(3.15)

The multiplication of Amn can be done in O(B) steps as it is sparse. So for all possible
m,n this yields O(B3) flops in total for the intermediate step.

3.4 The Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)

Sections 3.1 and 3.3 provides us with the tools necessary to manage the fast computation
of SO(3) Fourier transforms of bandlimited functions. Looking again at the NDSOFT
in (3.2) the naive approach of computation would yield O(MB3) flops.
The basic idea for obtaining a fast algorithm is a simple reorganization of the sums from
NDSOFT in (3.2) and (3.3). Two steps are necessary for this factorization: a separation
of variables and a re-indexing of the sums. In Algorithm 1 we will see in detail that
the application of Theorem 3.6 reduces the asymptotic complexity from O(MB3) to
O(M+B3 log2B) when omitting stabilization. In the following theorem we describe the
matrix factorization of the NDSOFT given in (3.5).

Theorem 3.6 The matrix D given in (3.5) by f = Df̂ representing the NDSOFT can
be split into the matrix product

D = FAW

where
W = diag (W mn)m,n=−B,...,B ∈ C(2B+1)2(B+1)×(2B+1)2(B+1)

15



is the diagonal block matrix consisting of the matrices W mn from Definition 3.2,

A = diag (Amn)m,n=−B,...,B ∈ C(2B+1)3×(2B+1)2(B+1)

the diagonal block matrix composed of blocks from (3.15) and finally a trivariate noneq-
uispaced Fourier matrix F ∈ CM×(2B+1)3 with

F =
(
e−i((m,l,n)(αq ,βq ,γq)T )

)
q=0,...,M−1;(l,m,n)∈IB .

(3.16)

Proof. For the separation of variables we simply use formula (2.2), which splits up
the Wigner-D functions according to the Euler angles of f(αq, βq, γq) ∈ DB. We may
rewrite (3.2) for q = 0, . . . ,M − 1 as

f(αq, βq, γq) =
B∑

l=0

l∑
m=−l

l∑
n=−l

f̂mn
l Dmn

l (αq, βq, γq)

=
B∑

l=0

l∑
m=−l

l∑
n=−l

f̂mn
l e−imαqdmn

l (cosβq)e−inγq . (3.17)

The next step is to rearrange these sums into

f(αq, βq, γq) =
B∑

m=−B

e−imαq

B∑
n=−B

e−inγq

B∑
l=max(|m|,|n|)

f̂mn
l dmn

l (cosβq).

Performing the change of basis from equation (3.7) we are able to replace the last sum
by a linear combination of Chebyshev polynomials

f(αq, βq, γq) =
B∑

m=−B

e−imαq

B∑
n=−B

e−inγq

B∑
l=0

tmn
l Tn(cosβq)(sinβq)mod(m+n,2).

Then (3.11) and (3.12) provide the change from Chebyshev coefficients to standard
Fourier coefficients, i.e.,

f(αq, βq, γq) =
B∑

m=−B

e−imαq

B∑
n=−B

e−inγq

B∑
l=−B

e−ilβqhmn
l

=
B∑

m=−B

B∑
n=−B

B∑
l=−B

hmn
l e−i(mαq+nγq+lβq)

for q = 0, . . . ,M − 1. Thus we obtain a trivariate Fourier transform which can be
represented by the matrix F in (3.16). �

Corollary 3.7 The adjoint NFSOFT, i.e., the matrix-vector multiplication by DH as
in (3.4) reads in matrix-vector notation as

f̂ = DHQf
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where Q is a matrix containing the quadrature weights uB
q . Corresponding to the matrix

D we split up its adjoint in a similar way into

f̂ = W HAHF HQf .

A possible choice for the matrix Q will be discussed in Section 3.5. Our implementa-
tions also provide an algorithm to compute this adjoint problem quickly, i.e., with the
same asymptotic complexity as the NFSOFT. Note that the explicit factorization of Q
is accomplished in a manner similar to that in [15].

Algorithm 1 Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)
Input: B ∈ N the bandwidth

XM a sampling set according to (3.1)
f̂ = (f̂mn

l ) the 1
3(B + 1)(2B + 1)(2B + 3) SO(3) Fourier coefficients

of f ∈ DB

1. Compute t = Wf̂ , the vector of (B + 1)(2B + 1)2 Chebyshev coefficients tmn
l in

O(B3 log2B) flops as described in Section 3.2.

2. Compute h = At, the vector of (2B + 1)3 Fourier coefficients hmn
l in O(B3) flops

as in Section 3.3.

3. Compute f = Fh by means of a trivariate NFFT in O(M +B3 logB) flops.

Output: f = (f (αq, βq, γq))q=0,...,M−1 the function samples of f ∈ DB as given in
(3.17)

Complexity: O(M +B3 log2B) flops

Clearly in Algorithm 1 the application of the NFFT in Step 3 can be replaced by a
FFT in case we have a sampling set of equispaced input nodes. In that case we will refer
to the algorithm as the fast SO(3) Fourier transform. Details on this special case can
be found in Section 3.5.

Remark 3.8 Instead of transforming the SO(3) Fourier coefficients into Chebyshev co-
efficients first, they could also be directly transformed into standard Fourier coefficients.
This is done by expanding the Wigner-d functions directly into a Fourier series

dmn
l (cos θ) =

l∑
s=−l

d̂mn
ls eisθ, |m|, |n| ≤ l,

where the Fourier coefficients d̂mn
ls are given by

d̂mn
ls = (−1)seiπ m+n

2 dms
l

(π
2

)
dsn

l

(π
2

)
,
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see [26] for details. What we gained by this rearrangement is that we omit the polynomial
transform and can now compute the DWT by means of an NFFT as well. But in contrast
to the previously suggested method we do not improve the computational complexity of
the discrete Wigner transform as we have to deal with an additional sum depending on
the bandwidth B. The asymptotic complexity would then increase to O(M +B4).

3.5 An exemplary quadrature rule

Algorithm 1 enables us to evaluate function values f(α, β, γ) from given SO(3) Fourier
coefficients f̂mn

l for any arbitrary sampling set XM . For special choices of XM we are able
to reconstruct the SO(3) Fourier coefficients f̂mn

l from function samples f(α, β, γ) using
a quadrature rule. The investigation of the adjoint NFSOFT and further quadrature
rules will be subject of future work but we will present one example here. The reason
to do so is we want to validate the results of the NFSOFT in Section 4. One idea
is to transform SO(3) Fourier coefficients into function samples by the NFSOFT from
Theorem 3.6. Then, by means of an adjoint NFSOFT, see Corollary 3.7, we reconstruct
the SO(3) Fourier coefficients used as input.
We assume the equispaced grid

XCC
B = {(αa1 , βb, γa2) : a1, a2 = 0, . . . , 2B + 1; b = 0, . . . , 2B} (3.18)

with uniformly distributed sample points

αa1 =
πa1

B + 1
, γa2 =

πa2

B + 1
and βb =

πb

2B
.

Note that technically speaking we are now dealing with an SO(3) Fourier transform at
equispaced nodes which can be computed by using the standard FFT instead of the
NFFT in the last step of Algorithm 1. Other algorithms for equispaced discrete SO(3)
Fourier transforms can also be found e.g. in [16] (see Remark 3.9).
By using the grid XCC

B we can compare accuracy and time requirements of our results
with the exact computations, as we know the associated quadrature rule. In our example
we use a Clenshaw-Curtis quadrature rule for the Wigner-d functions. Let us now collect
the formulae necessary for the reconstruction.
We would like to evaluate a function f ∈ DB for given Fourier coefficients f̂mn

l . Starting
with the Fourier coefficients given by the integral

f̂mn
l =

2l + 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(α, β, γ)Dmn

l (α, β, γ) sinβ dα dβ dγ,

=
2l + 1
8π2

∫ 2π

0
eimα

∫ 2π

0
einγ

∫ π

0
dmn

l (β)f(α, β, γ) sinβ dβ dγ dα
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we can employ the following quadrature rule to describe the integral with respect to the
two angles α and γ about the z-axis with

fb(β) =
∫ 2π

0

∫ 2π

0
f(α, β, γ)eimαeinγ dγ dα

=
1

4(B + 1)2

2B+1∑
a1=0

2B+1∑
a2=0

f(αa1 , β, γa2)e
i(mαa1+nγa2 ) (3.19)

at nodes αa1 = a1π
B+1 and γa2 = a2π

B+1 for a1, a2 = 0, . . . , 2B+1. For the quadrature of the
Wigner-d function we use a Clenshaw-Curtis rule with nodes βb = lπ

2B for b = 0, . . . , 2B
and weights uB

b such that the integral transforms to

∫ π

0
dmn

l (β)fb(β) sinβdβ =
1

2l + 1

2B∑
b=0

uB
b d

mn
l (βb)fb(βb). (3.20)

The weights are given according to [6, pp. 86] by

uB
b = uB

b+B =
ε2B
b

B

B∑
j=0

εBj
−2

4j2 − 1
cos
(
πbj

B

)
(3.21)

with εBl = 1− δl0 + δlB
2

for b = 0, . . . , B. We are now able to weight the adjoint transform
with combined weights such that the Fourier transform is exactly computed for a set of
nodes on the grid XCC

B . Putting together (3.19), (3.20) and (3.21) yields

f̂mn
l =

1
4(B + 1)2(2l + 1)

2B+1∑
a1=0

2B+1∑
a2=0

2B∑
b=0

uB
b f(αa1 , βb, γa2)Dmn

l (αa1 , βb, γa2). (3.22)

Seen from an algebraic point of view, we have the vector of SO(3) Fourier coefficients

f̂ = (f̂mn
l )(l,m,n)∈IB

∈ C( 4B3−B
3

),

the data vector

f = (f(αa1 , βb, γa2))(αa1 ,βb,γa2 )∈XCC
B

∈ C(2B+2)2(2B+1)

containing the sampled values of the original function as well as the matrix D ∈
C(2B+2)2(2B+1)×( 4B3−B

3
) consisting of the Wigner-D functions for all indices (l,m, n) ∈ IB

at all sampling nodes g(αa1 , βb, γa2) with (αa1 , βb, γa2) ∈ XCC
B .

The quadrature weights go into two different diagonal matrices. The first matrix

UB = diag
(
uB

a1,b,a2

)
(a1,b,a2)∈XCC

B

∈ R((2B+2)2(2B+1))×((2B+2)2(2B+1))
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depends on the sampling nodes g(αa1 , βb, γa2) and contains the weights uB
a1,b,a2

= uB
b

ordered according to the indices a1, b, a2. The remaining parts of the weights are going
into another diagonal matrix

V B = diag
(
vB
m,l,n

)
(l,m,n)∈IB

∈ R( 4B3−B
3

)×( 4B3−B
3

)

where
vB
m,l,n = vB

l =
1

4(B + 1)2(2l + 1)
.

Summarizing, we obtain

Df̂ = f for the discrete SO(3) Fourier transform,

V BDHUBf = f̂ for the adjoint transform,

see also Corollary 3.7. In Section 4 the accuracy of the NFSOFT is tested by computing
a combination of NFSOFT and its adjoint.

Remark 3.9 In our experiments we chose to apply a Clenshaw-Curtis type quadrature
rule for arguments βb of the Wigner-d functions dmn

l (βb) on the closed interval βb ∈
[0, π]. In contrast the authors of [16] use a slightly different rule as the authors consider
βb = (2b+1))π

4B for b = 0, . . . , 2B − 1, i.e., on the open interval βb ∈ (0, π) for integrating
the Wigner-d functions with weights

ũB
l =

2
B

sin
(
π(2l + 1)

4B

)B−1∑
j=0

sin((2j + 1)(2l + 1) π
4B )

2l + 1
.

4 Numerical Results

We now present some numerical examples to demonstrate performance and accuracy of
the NFSOFT algorithm and certain parts of it. All algorithms mentioned were imple-
mented in C and tested on a 3.00 GHz Intel XeonTM processor with 12GB main memory,
SuSe-Linux (64 bit), using double precision arithmetic. In addition to that, we used the
FFTW 3.2α [9] and NFFT 3.0.3 [14] libraries.
If not mentioned otherwise, we used pseudo-random SO(3) Fourier coefficients f̂mn

l from
the complex square

[
−1

2 ,
1
2

]
×
[
− i

2 ,
i
2

]
and pseudo-random nodes (α, β, γ) ∈ [0, 2π) ×

[0, π] × [0, 2π). Whenever involved we invoked the NFFT algorithm [14] with oversam-
pling factor ρ = 2 and precomputed Kaiser-Bessel functions.

4.1 The Wigner Transform

First, we examine the Wigner transform itself, i.e., the transform represented by the
matrix W from Definition 3.2. We consider three variations of the transform:
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1. DWT: the transform corresponding to the matrix W mn as described in Section
3.1, i.e., the transform that converts SO(3) Fourier coefficients into Chebyshev co-
efficients by the three-term recurrence relation (3.6) using the Clenshaw algorithm.

2. FWT: the same transform as above but using the concepts of the fast polynomial
transform to evaluate the modified three-term recurrence relation (3.9) described
in Section 3.2. Moreover the stabilization scheme mentioned is applied.

3. FWT (w/o): the same transform as the FWT but without stabilization.

Time requirements: The first test examines the time requirements of the Wigner
transform. We computed the vector of Chebyshev coefficients tmn = (tmn

0 , . . . , tmn
B )T

from the SO(3) Fourier coefficients f̂
mn

=
(
f̂mn
max(|m|,|n|), . . . , f̂

mn
B

)T
and the matrix

W mn ∈ C(B+1)×(B−max(|m|,|n|)) by evaluating tmn = W mnf̂
mn

using the FWT algo-
rithm with and without stabilization, and the DWT.
For a fixed bandwidth B, we computed the transform for all possible pairs of orders
|m|, |n| ≤ B. Figure 4.1 shows the average time for one transforms. It shows that with-
out the stabilization the FWT becomes really fast (solid line) compared to the DWT
(dotted line). This confirms the different asymptotic complexities of the DWT (O(B2))
and FWT (w/o) (O(B log2B)) algorithms. That is the good news. Unfortunately, the
stabilized FWT (dashed line) does not show the same asymptotical behavior as its un-
stabilized version. Our numerical tests show that it is slower. As we were not able to
determine in advance the number of stabilization steps needed in the FWT, we can not
prove the asymptotic complexity of the stabilized FWT, and whether it is closer to the
DWT or the FWT (w/o). However, when looking at the absolute times we see that the
stabilized FWT is still a large improvement over the DWT as it takes only half the time
to compute a transform in average.

Errors: The previous test showed that the time required by the FWT is an improvement
over the DWT algorithm, especially when using the FWT (w/o). This next test should
shed light on the errors produced during the Wigner transform. Figure 4.2 shows the
error

E∞ =
||t− tFWT ||∞

||t||1
between the Chebyshev coefficients tFWT = (tmn

l )(l,m,n)∈IB
computed by the FWT or

FWT (w/o) and the coefficients in t computed by the direct algorithm DWT for different
bandwidths B. The norms || · ||1 and || · ||∞ are the lp−norms of vectors.
For the tested bandwidths up to B = 1024, the error of the stabilized FWT does not
exceed 10−12. In contrast the error of the FWT (w/o) grows dramatically losing single
precision at about bandwidth B = 80.

Stability Issues: In the first experiment we examined the time requirements of the
DWT, FWT and FWT (w/o). It showed that the stabilization is costly in terms of
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Figure 4.1: For this figure the Wigner transform has been computed for all dmn
l where

(l,m, n) ∈ IB occurring in a SO(3) Fourier transform of bandwidth B. The
average times for performing one Wigner transform using the FWT (w/o)
algorithm (solid), the stabilized FWT (dashed) and the DWT (dotted) are
shown as a function of the bandwidth B for all B = 16, . . . , 1024.
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Figure 4.2: For this graph the Wigner transform has been computed for all dmn
l where

(l,m, n) ∈ IB occurring in a SO(3) Fourier transform of bandwidth B. The
average error occurring in one Wigner transform using the FWT (w/o) al-
gorithm (solid), the stabilized FWT (dashed) are shown as a function of the
bandwidth B for all B = 16, . . . , 128.

runtime. On the other hand the second experiment showed that we can not discard
stabilizing if we compute with large bandwidths. So in this next test we would like to
analyze how often the stabilization scheme is applied within the transform.
Once again, the fast Wigner transform has been computed for all sets of degree l and
orders m,n occurring in a SO(3) Fourier transform of bandwidth B, i.e., for a fixed

22



0 100 200 300 400
1

100

104

106

108

bandwidth B

N
um

be
r

of
St

ab
ili

za
tio

n
St

ep
s

Figure 4.3: The graph shows the number of stabilization steps for all Wigner transforms
of orders |m|, |n| ≤ B as a function of the bandwidth B for two differently
chosen κ along with the upper bound for the number of stabilization steps
(solid), i.e., the total number of transform steps in which the algorithm
decides whether or not to stabilize. The parameter controlling the accuracy
κ is set to κ = 3 (dotted) and κ = 8 (dashed).

bandwidth B we computed the transform for all possible pairs of orders m,n ≤ |B|.
We then counted how often the stabilization routine is called. The graph shows the
averaged values of the number of stabilization steps. This number does not only depend
on the bandwidth B of the transform but also on an internal parameter κ. Whenever
the absolute value of an associated Wigner-d function |dm,n

c (1, l)| exceeds κ we use the
stabilization scheme. We chose κ = 103 (dotted line) and κ = 108 (dashed line). The
solid line represents the total number of steps in the cascade of the polynomial transform
and thus the upper bound for the number of stabilization steps.
The graph now shows that by choosing a lower threshold κ, the number of stabilization
steps increases, but only by a constant factor. If we compare the two functions with
the total number of steps we see they show constant growth as the bandwidth increases.
Indeed the relative portion of stabilization steps tends to 8% for κ = 108 and 25% for
κ = 103.

4.2 The SO(3) Fourier Transforms

Now we consider the Fourier transform on the whole SO(3). We test our NFSOFT
algorithm, (see Algorithm 1), and compare it to the NDSOFT, i.e., the naive evaluation
of (3.2). We chose the following three variations of our algorithm:

1. NFSOFT (FWT): the transform described in Algorithm 1 using FWT (see Section
3.2) with stabilization and the NFFT,

2. NFSOFT (DWT): the transform as above but with DWT (see Section 3.1) instead
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of the FWT,

3. NDSOFT: the transform as above using the DWT and nonequispaced discrete
Fourier transform (NDFT) and thus directly evaluating equation (3.2).

Time requirements: The first test examines the time requirements of the various
nonequispaced variations of the SO(3) Fourier transform mentioned above. From the
vector of SO(3) Fourier coefficients f̂ = (f̂mn

l )(l,m,n)∈IB
we compute the vector of func-

tion samples f = (f(gq))gq∈XM
of a function f ∈ DB for a sampling set XM consist-

ing of pseudo-randomly generated rotations gq ∈ SO(3). This was done by evaluat-
ing the matrix-vector-product f = Df̂ with the nonequispaced SO(3) Fourier matrix
D =

(
Dmn

l (gq)
)
gq∈XM ;(l,m,n)∈IB

.

In Figure 4.4 we show the time requirements for the NDSOFT, NFSOFT (FWT) and
the NFSOFT (DWT), respectively. The number of nodes is set to M = B3 while we
test the algorithms for different bandwidths. We see that the two NFSOFT algorithms
outperform the NDSOFT for all bandwidths. Comparing the two NFSOFT versions we
see that for bandwidths B < 64 they do not show any significant differences. That means
the NFFT algorithm dominates the runtime behavior completely. But at bandwidths
larger than 64 the NFSOFT (FWT) becomes faster than the NFSOFT(DWT), i.e., the
Wigner transform becomes more important. Note that we used the stabilization scheme
within the FWT. That verifies that the stabilization does not have major influence on
the runtime after all and using the FWT with stabilization is a gain over the slow DWT.
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Figure 4.4: The graph shows the runtime of a SO(3) Fourier transform as a function of
the bandwidth B = 16, . . . , 112 for the three nonequispaced variations ND-
SOFT (dotted), NFSOFT(FWT) (solid) and NFSOFT(DWT) (dot-dashed).

The graph of Figure 4.5 shows the runtime as a function of the number of input nodes
for B = 32 (solid) and B = 64 (dashed). We see that up to M = B3 nodes the runtime
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Figure 4.5: In the graph we see the runtime of the NFSOFT(FWT) as a function of the
number of input nodes M = 10n for n = 2, 3, . . . , 6 and different bandwidths
B = 32 (solid) and B = 64 (dashed).

is almost constant, i.e., the bandwidth controls the runtime of the NFSOFT. For larger
number of nodes they become the dominant factor over the bandwidth. We then see
linear growth of runtime which verifies that the nodes only add linear to the asymptotic
complexity. If we computed this figures also for the NFSOFT (DWT) we would not
spot a difference in time between the NFSOFT (FWT) here. That is due to the fact
that both Wigner transforms, DWT and FWT, are independent of the input nodes (see
Section 3.1).

4.3 Equispaced SO(3) Fourier Transforms

We give an example for the results in Section 3.5, i.e., we compute an SO(3) Fourier
transform on a given equispaced sampling set, use the Clenshaw-Curtis quadrature from
Section 3.5, and test the adjoint algorithm.
We consider the error

E∞ =
||f̂ − ̂̃f ||∞

||f̂ ||1

where the vector f̂ = (f̂mn
l )(l,m,n)∈IB

contains the original SO(3) Fourier coefficients,

and ̂̃f = (̂̃fmn

l )(l,m,n)∈IB
contains the coefficients computed via the fast SO(3) Fourier

transform and its adjoint using the Clenshaw-Curtis quadrature rule from (3.22). Figure
4.6 shows this error as a function of the bandwidth. We choose the FWT threshold
κ = 108 (dashed line) and κ = 103 (solid line), respectively. The two parameters
control the accuracy of the fast Wigner transform. The number of nodes is given by
the Clenshaw-Curtis quadrature rule with M = (2B + 2)2(2B + 1). We compare our
results to the ones from the SOFT in [16] (dotted). Note that for this special grid, we

25



20 40 60 80 100 120

10-11

10-10

10-9

10-8

10-7

10-6

bandwidth B

E
¥

band- equispaced DWT
width B FWT from [16]

64 5.9e-06 1.9e-05
128 6.2e-05 5.3e-05
256 6.3e-04 4.2e-04
512 1.9e-03 1.3e-03
1024 4.8e-03 5.3e-03

Figure 4.6: The error E∞ of the fast SO(3) Fourier transform and its adjoint as a function
of the bandwidth B = 16, . . . , 128 at equispaced nodes using the quadrature
rule as described in Section 3.5 (solid and dashed lines) as well as the error
of the SOFT algorithm from [16](dotted line). The table on the right shows
the CPU time requirements in seconds of both, the FWT and the Wigner
transform from [16], using Wigner-d functions d0,0

l for l = 0, . . . , B.

can replace the NFFT by the FFT.
The graph shows that indeed once we decided for the accuracy controlling parameter
κ the error stays at a constant level for our algorithm, i.e., it does not depend on the
bandwidths displayed here. That is due to the stabilization scheme we applied here once
more. We also see that the error of the SOFT algorithm is slightly bigger than our best
case.
After comparing the errors of our equispaced NFSOFT algorithm to the one from [16]
we like to mention a comparison in computational time. In the equispaced case from
Section 3.5 the difference between both algorithms lies in the evaluation of the sums
(3.7). Focussing on this step of the algorithm the table in Figure 4.6 lists the CPU
time needed for a Wigner transform either computed by our FWT or by the algorithm
from [16] for some bandwidths B. We see that our FWT becomes faster for bandwidths
B ≥ 1024 due to its more favourable complexity but is slower for smaller B as it has
larger computational overhead.

4.4 Conclusion

We presented a method for the efficient and accurate calculation of the SO(3) Fourier
transform

f(gq) =
B∑

l=0

l∑
m=−l

l∑
n=−l

f̂mn
l Dmn

l (gq), q = 0, . . . ,M − 1,

of B-bandlimited functions f ∈ DB at M arbitrary nodes gq ∈ SO(3), as well as the
adjoint transform.
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We showed how to split up the computation of the whole transform

f = Df̂ = FAWf̂

into three steps. The new algorithm NFSOFT computes the SO(3) Fourier transforms by
means of a trivariate NFFT, represented by the matrix F and a fast Wigner transform,
represented by the matrix W . Instead of naively O(MB3) operations we can compute
the NFSOFT in O(M +B3 log2B) flops or O(M +B4) flops depending on whether we
choose the FWT or DWT algorithm. The numerical results show that the NFSOFT
outperforms its counterpart, the NDSOFT.
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