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Abstract

Several useful representations of a function f : €, — IR exist which are usually
related to specific purposes: (i) series expansion into spherical harmonics to do mathe-
matics, (ii) series expansion into (unimodal) radial basis functions to do probability and
statistics, (iii) series expansion into spline functions to do numerics. In many practical
applications the common problem is to reconstruct an approximation of f from sampled
data (rg, f(r;)),s = 1,...,n, with some convenient properties using one of the above
representations. Their critical parameter, e.g. (i) the degree of the harmonic series
expansion, (ii) the spherical dispersion of unimodal radial functions, (iii) the choice of
the knots, may to some extent be adjusted to the total number and/or the geometric
arrangement of the measurement locations. However, these representations are in no
way involved in the sampling process itself.

After briefly reviewing the basics of wavelets and the specifics of spherical wavelets,
another representation of f in terms of spherical wavelets is introduced. It will be
shown that spherical wavelets are well suited to render functions defined on a sphere.
Moreover, it will be demonstrated that wavelets are well apt to allow for locally vary-
ing spatial resolution, thus providing a digital device to zoom into those spherical areas
where the function f is of special interest. Such a device seems to be required to increase
the spatial resolution by a factor of 1000 or greater locally. Thus, spherical wavelets
provide the means to control the sampling process to gradually adapt automatically
to a local refinement of the spatial resolution. In particular, it is shown that spherical
wavelets apply to X-ray pole intensity data as well as to crystallographic orientation
density functions, and that the multiscale resolution easily transfers from pole spheres
to orientation space.
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Introduction
A polynomial H,(z1,...,z,) is homogeneous of degree n in p variables z1, ..., z, if
H,(txy,...,te,) =t"Hy(z1,...,1,) .

With the Laplace operator in p dimensions

p 62F
AF =
y4 Z:ZI axz2
where z;, ¢ = 1,...,p, denote Cartesian coordinates in IR, any polynomial R, (z1,...,%;)
satisfying
AR, =0

is said to be a harmonic polynomial. The total number of linearly independent, homogeneous
harmonic polynomials of degree n in p variables is

2n+p—2(n+p—3
N(P,H)ZT< n—1 >,

eg. N(2,n)=2, N3,n)=2n+1, N(4,n) = (n+ 1)
A homogeneous harmonic polynomial H,, of degree n in p variables may be written as

Hy(x) = Hy([[x[| =) = 7"Ya(r)

X
[l

and Y, is referred to as spherical harmonic in p dimensions, (cf. Hochstadt, 1986).
Let Q, = {x € IR? | ||x|| = 1} denote the unit sphere in p dimensions, and dw, its surface

element such that
/ d 2mP/?
Wy = Wy = ————,
"o, P T(p/2)

e.g. wo = 2m, wy = 4m, wy = 272
Any two spherical harmonics of different degree are orthogonal on the sphere, i.e.

/ Y, (r)Yi(r)dw, =0

P

for n # k. If {Y,} is a set of N(p,n) linearly independent spherical harmonics, then it is
possible to construct an orthonormal set Yy, 1,...Y, npn), 1€

A Yo,i(0) Yo k(r)dwy, = 65k

It can be shown that

S Vi (1) Vi () = 2T
j=1




where P, are the Legendre polynomials of degree n in p dimensions.
Furthermore, every spherical harmonic can be represented as a linear combination of
Legendre polynomials in the form

N(p,n)
Yo(r) = ) ¢lu(r-r))
j=1

for a suitably chosen set of unit vectors r; € Q,, j =1,..., N(p,n). The Legendre polyno-
mials provide the reproducing kernel, i.e.

N(p,n

Y, (r) = Y®:n) / Y, (t)Py(r - ') .dw,
Wp (o

Eventually, it should be noted that the Legendre polynomials in p dimensions are essentially
the Gegenbauer polynomials

= (") o
n

The Funk-Hecke theorem states that
1

/Q f(r1-19)Yo(r2)dw, = wp_lYn(rl)/ FRPL () (1 — £2)=3)/2gs

-1

Spherical wavelet representation

The main idea of wavelet analysis is to obtain a multiscale representation of the data or
functions which allows localization in space and frequency. The advantages of such splittings
have been used recently in a variety of applications (cf. Freeden et al, 1998).

This idea will be exemplified for functions defined on Q3 C IR?, in particular for crys-
tallographic pole functions; analogous results hold for orientation density functions defined
on Q4 C IR*, and their one-to-one correspondence has recently been shown (Schaeben et al.,
2001a). Generally, spherical wavelet analysis applies to any dimension p.

Initially, a pole density function is sampled on a coarse almost equidistributed grid on the
sphere €23. These measurements are approximated by a spherical polynomial of low degree.
This polynomial is clearly a sufficiently good approximation in regions of the sphere where the
underlying function does not oscillate too much or in other words consists of low frequencies,
only. This approximation requires improvement in regions of the sphere where the initial data
are largely oscillating. Therefore, additional measurements are required only locally. The
crucial point is now the construction of a high degree polynomial from the globally coarse
grid and the locally refine grid. This can be seen as adding adaptively and locally a wavelet
part to the global approximation of low degree.

Any function F' defined on €23 may be associated with its harmonic series expansion

oS V4

F(r) = ; ;EFe,nYz,n(r)

'S J4

= 3 3 < F(0),Yeu(0) > Yiu(r) (1)

=0n=—¢



with the inner product on the sphere with the surface element ds

< Fl,FQ >= 0 Fl( )F2( )dS( )
3
The space of all spherical harmonics of degree ¢ with £ = 0,1,2,..., i.e. the restriction
to the unit sphere of all homogeneous and harmonic polynomials in 3 variables, is denoted
by V¢ then dim ), = 2¢ 4+ 1. The most important property of spherical harmonics here
is their orthogonality relation. Namely, for Y,,, € ), and Y, € Vi with £ # k it holds
< }/g,m, Yk,n >=( and

LZ

L) =DV

=0

[

i.e. any function in £2(23) may be represented by its harmonic series expansion.

Further, I1,,(Q3) = @}, Ve with dimIT,(Q3) = (n + 1)

Let { ]} be a sequence of strictly monotone increasing positive integers. Then scaling
spaces V; are introduced as polynomial spaces

Vi(Qs) = Iy, (2s)
with dim V;(23) = (IV; + 1)?. Hence there is a chain
Vo(S23) C Vi(§23) C Va(3) C

and it is sensible to define the corresponding orthogonal complements

Njt1
W;(Qs) = Vi1(Q) 0 V(%) = @
L=N;+1
with dlmW ( j+1 — N])(N]+1 + ]\/vJ + 2) Finally,
£2

£2(924) = Vo() © D W (@)

The classical approach of wavelet theory uses N; = 27. However, in case of pole density
functions defined on the unit sphere this would imply very large dimensions of the wavelet
spaces. Therefore our choice in the calculations is more like N; = 207.
Using now
20+1
47

¢
> Yik(ry)Yer(rs) =
k=—¢

Py(ry - ry), r;,ro € (3

with Legendre polynomials Py of degree ¢ with Py(1) = 1 results in

F)=3 < F(o), 221

£=0

P r-0) > 2)



Considering harmonics only up to order N; the approximation Sy, F' (r) with respect to V} is
given by

i 20+ 1
Sy, Fr) =3 < F(o), = —Pyfr o) > (3)
=0 &
and the corresponding next wavelet part by
A 20+ 1
Sw,F(r)= > < F(o), Py(r-o) > (4)
Nj—|—1
Introducing the kernel
Nj
Gi(t) = S (20 +1)Py(2)
=0
it holds )
Sy, F(r) = /Q )G (xx)ds(r') (5)
The right hand side can be numerically evaluated by a sampling theorem (cf. Potts et al,
1996), i.e.
SLE(E) = ¥ w} (k) F(x}, )G, (x - 1)) (6)
kEIj

with I] = {k = (l{,‘l,kg)T € lNg : ]{31 < 2Nj,k2 < QNJ} and

T
7Tk1 7Tk2 7TI€1 . 7Tk'2 . 71']{/'2
rx = | COS COS COS Sin Sin
» 2N; N’ - .

by using the Clenshaw—Curtis weights. Analogously, with

Njq1
Hi(t)= Y, (20+1)P(t)
EZNJ'—FI
and
S‘{VjF(r) = Z w}ﬂ(k)F(r;'H,k)Hgl'(r : r;'+1,k) (7)
kel
it holds
Sv:, F(r) = Sy F(r) + Sy, F(r). (8)
Substituting Sy, F'(r) by
Sk F(x) = 3wy (K LF(xh ) Hy(r - 1)) 9)
kel

with
F(rjy1x) if F is large,

L;F(r; = 0
i F (1) {S{,F(rj+1,k) otherwise, o



eventually yields A R
S‘I/HlF(r) :S‘I/jF(r)+S{VjF(r). (11)

Summarizing, the proposed procedure is as follows. The function F(r) is known on a
coarse r—grid and Si f(x) is computed. By inspection or algorithms (cf. Mhaskar et al.,
2001) the regions where F(r) and S{ F(r) have large absolute values and large oscillations,
respectively, are detected. In the next step the approximation S F is improved by adding
the next wavelet part Sj,F. Since F(r) cannot be totally sampled on a refined r—grid and
since it is known that Si, F is almost zero in regions where F(r) does not oscillate too much,
SLF 4 SLF is replaced by SLF + S}, F. The definition of L; shows that the function F(r)
must be resampled for some additional points in the regions where large oscillations of F'(r)
are observed or expected (cf. Schaeben et al., 2001b).
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Figure 1: Given data on Iy (left), error Sy, F'(r) — F(r) on Iy (right).

In the following we give a numerical example. Figure 1 (left) shows the given data of a
function F(r) on a grid Iy. Figure 1 (right) shows the error Sy, F(r) — F(r) on the full grid
Iy. Note that

loo = max
" kely

ST, F(rox) — F(rox)| = 1951

and

Iy = \l > IS F(ron) - F(rg,k)\2 = 4298 .

kelg

Figure 2 (left) shows the error using a much higher polynomial degree of 220. More
precisely we show the error |S{, F(r) — F(r)| on the full grid Iy and observe I, = 375
and [y = 1592. Figure 2 (right) shows the error S’{,zF(r) — F(r) which improve the results
significantly, since /,, = 28 and Iy = 555.

Finally we use only 25.3 % and 6.6 % of the given data and plot the errors ,SA’{,ZF(r) —F(r)
on Iy in Figure 3 (left) and Figure 3 (right), respectively. Note that even if we use only 6.6
% of the given data the error S‘I,H(S"I@F(r)) — F(r) looks similar as in Figure 2 (left), where
we used all data. In this case we obtain [, = 376 and I, = 1596.
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Figure 3: Error S{, F(r)—F(r) on I, using 25.3 % of the given data (left), error S{, F(r)—F(r)
on Iy using 6.6 % of the given data (right).

Spherical X—ray transform

A spherical X-ray transform of a function f defined on the sphere €2, is introduced as the
mean of f along the circle spanned by two orthogonal elements q;, q2 € €2,. In particular, for
p =4, qi,q2 € €4 can be interpreted as unit quaternions ¢, ¢y € IH representing (passive)
rotations in SO(3). In this special case the circle

C(q1,q2) = q1 cost + gosint = ¢(t), t € [0,2m)

spanned by ¢y, ¢ represents the set of all rotations mapping r := Vec (q1¢5 ") = Vec (g2q7") €
Q3 on h := Vec (¢7'q2) = Vec (g5 'q1) € Qs, i.e.

¢ 'rg="h for all ¢ € C(q1, ¢2) -



Therefore, the spherical X-ray transform % Joom f (q(t))dt of f for p =4 may be thought of
as a function defined on €3 x Q3 by

AN == [ s (12)

27
For more details the reader is referred to Schaeben et al., 2001c.

Since an even function f on €24 is uniquely determined by its spherical Radon transform
(cf. Schneider, 1969; Miiller, 1998), it is also uniquely determined by its X-ray transforms
Af (Nikolayev and Schaeben, 1999).

If f is a probability density function (of rotations), then its X-ray transforms Af are
referred to as axes density functions in applied crystallography, and can be sampled as crys-
tallographic pole density functions for given crystallographic axes h in a X-ray diffraction
experiment.

For this case it has recently been shown (Schaeben et al., 2001a) that the spherical
X-ray transform of the wavelet representation of f is the wavelet representation of the X-—
ray transform Af(h,o), and that the wavelet representation can be applied to solve the
inverse problem to determine numerically the crystallographic orientation density function
f from experimental X-ray intensities measured in diffraction experiments with a texture
goniometer.

Applications

Methods of high resolution texture analysis are required in crystallography to resolve the
orientation distribution observed in very recent synchrotron radiation experiments (Wenk,
2001) of single crystals, which were conventionally thought of as being uniquely oriented.

High resolution texture analysis is also required in quality control of high tech mate-
rials where the ultimate goal is a perfect “single crystal” preferred orientation, as in high—
temperature semi—conductors where the mean deviation from the “single crystal” peak orien-
tation must not be larger than 1 degree. Similar problems arise in the analysis of “bamboo—
structures” of single crystal wide copper wires on silicon wavers, or in thin epitaxial su-
perconducting films, the electrical and magnetic properties of which are critical for their
performance as electronic devices and need to be optimized.

Conclusions

The main idea of wavelet analysis is to obtain a multiscale representation of the data or func-
tions which allows localization in space and frequency. In particular, the spherical wavelet
representation of pole density functions corresponds to a hyperspherical wavelet represen-
tation of orientation density functions and vice versa. Thus, multiscale representation is
transferred from one to the other and applies simultaneously.

The representation of sphercial functions, e.g. pole density functions, orientation density
functions, spherical elevation models etc., by spherical wavelets

e is well suited to render them,



e provides a multiscale representation which allows for localization in frequency and space
domain, i.e. adjusted to a locally refined grid according to large variations in the
recorded data,

e provides means to design experimental devices with an automated adaptive control of
the data sampling process adjusting the scan to a refined grid in areas of large data
variations,

e applies in particular to the solution of the inverse texture problem due to the corre-
spondence of the multiscale representation of pole and orientation density functions by
virtue of (generalized) spherical wavelets.
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