Publikationen Dr. Yurii Kolomoitsev
- Yu. Kolomoitsev
Approximation by quasi-interpolation operators and Smolyak's algorithm
submitted arXiv
- Yu. Kolomoitsev, J. Prestin
Approximation properties of periodic multivariate quasi-interpolation operators
submitted arXiv
- Yu. Kolomoitsev, M. Skopina
Uniform approximation by multivariate quasi-projection operators
submitted arXiv
- Yu. Kolomoitsev, E. Liflyand
Asymptotics of the Lebesgue constants for a d-dimensional simplex
to appear in Proc. Amer. Math. Soc. arXiv
- Yu. Kolomoitsev, S. Tikhonov
Hardy-Littlewood and Ulyanov inequalities
to appear in Mem. Amer. Math. Soc. (2021) arXiv
- Yu. Kolomoitsev, T. Lomako
Asymptotics of the Lebesgue constants for bivariate approximation processes
Appl. Math. Comput. 403 (2021), 126192 DOI arXiv
- Yu. Kolomoitsev, M. Skopina
Quasi-projection operators in the weighted Lp spaces
Appl. Comput. Harmon. Anal. 52 (2021), 165-197 DOI arXiv
- Yu. Kolomoitsev, M. Skopina
Approximation by multivariate quasi-projection operators and Fourier multipliers
Appl. Math. Comput. 400 (2021), 125955 DOI arXiv
- Yu. Kolomoitsev, S. Tikhonov
Smoothness of functions vs. smoothness of approximation processes
Bull. Math. Sci. 10 (2020), no. 3, 2030002 DOI arXiv
- Yu. Kolomoitsev, A. Krivoshein, M. Skopina
Approximation by periodic multivariate quasi-projection operators
J. Math. Anal. Appl. 489 (2020), no. 2, 124192 DOI
- Yu. Kolomoitsev, S. Tikhonov
Properties of moduli of smoothness in Lp(Rd)
J. Approx. Theory 257 (2020), 105423 DOI arXiv
- Yu. Kolomoitsev, M. Skopina
Approximation by sampling-type operators in Lp-spaces
Math. Methods Appl. Sciences 43 (2020), no. 16, 9358-9374, DOI arXiv
- Yu. Kolomoitsev, T. Lomako
Inequalities in Approximation Theory Involving Fractional Smoothness in Lp, 0<p<1
In: Abell M., Iacob E., Stokolos A., Taylor S., Tikhonov S., Zhu J. (eds) Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham, 2019, pp 183-209 DOI arXiv
- Yu. Kolomoitsev
Best approximations and moduli of smoothness of functions and their derivatives in Lp, 0<p<1
J. Approx. Theory 232 (2018) 12-42 DOI
- Yu. Kolomoitsev, T. Lomako
On the growth of Lebesgue constants for convex polyhedra
Trans. Amer. Math. Soc. 370 (2018), 6909-6932 DOI
- Yu. Kolomoitsev, A. Krivoshein, M. Skopina
Differential and falsified sampling expansions
J. Fourier Anal. Appl. 24 (2018), no. 5, 1276-1305 DOI
- Yu. Kolomoitsev, T. Lomako, J. Prestin
On Lp-error of bivariate polynomial interpolation on the square
J. Approx. Theory 229 (2018), 13-35 DOI
- Yu. Kolomoitsev, M. Skopina
Approximation by multivariate Kantorovich-Kotelnikov operators
J. Math. Anal. Appl. 456 (2017), no. 1, 195-213 DOI
- Yu. Kolomoitsev
On moduli of smoothness and averaged differences of fractional order
Fract. Calc. Appl. Anal. 20 (2017), no. 4, 988-1009 DOI
- P. Dencker, W. Erb, Yu. Kolomoitsev , T. Lomako
Lebesgue constants for polyhedral sets and polynomial interpolation on Lissajous-Chebyshev nodes
J. of Complexity 43 (2017), 1-27 DOI
- Yu. Kolomoitsev, E. Liflyand
On weighted conditions for the absolute convergence of Fourier integrals
J. Math. Anal. Appl. 456 (2017), no. 1, 163-176 DOI
- Yu. Kolomoitsev, M. Skopina
Around Kotelnikov-Shannon formula
Conference: 2017 International Conference on Sampling Theory and Applications (SampTA), Tallin, Estonia, 2017, pp. 279-282 DOI
- Yu. Kolomoitsev, T. Lomako, J. Prestin
On approximation of functions by algebraic polynomials in Hölder spaces
Math. Nachr. 289 (2016), 2037-2057 Abstract
- Yu. Kolomoitsev, J. Prestin
Sharp estimates of approximation of periodic functions in Hölder spaces
J. Approx. Theory 200 (2015), 68-91 DOI
- Yu.S. Kolomoitsev
Inequalities for fractional derivatives of trigonometric polynomials in spaces with integral metric
(Russian) Ukr. Mat. Zh., 67 (2015), no. 1, 42-56; translation in Ukr. Math. J., 67 (2015), no. 1, 45-61 DOI
- Yu.S. Kolomoitsev
Multiplicative sufficient conditions for Fourier multipliers
(Russian) Izv. RAN. Ser. Mat., 78 (2014), no. 2, 145-166; translation in Izv. Math., 78 (2014), no. 2, 354-374 DOI
- Yu.S. Kolomoitsev
On the Bernstein-type inequalities for fractional derivatives in the classes $\varphi(L)$
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 26 (2013), 95-103
- Yu.S. Kolomoitsev
On sufficient conditions for Fourier multipliers
(Russian) Dopov. Akad. Nauk Ukr. (2013), no. 6, 13-18
- Yu. Kolomoitsev, E. Liflyand
Absolute convergence of multiple Fourier integrals
Studia Math., 214 (2013), no. 1, 17-35 Abstract
- Yu.S. Kolomoitsev
On the representation of functions as Fourier integrals
(Russian) Mat. Zametki, 93 (2013), no. 4, 555-565; translation in Math. Notes, 93 (2013), no. 4, 561-570 DOI
- Yu.S. Kolomoitsev
On a class of functions representable as a Fourier integral
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 25 (2012), 125-132
- Yu.S. Kolomoitsev
Approximation properties of generalized Bochner-Riesz means in the Hardy spaces $H_p$, 0<p$\le 1$
(Russian) Mat. Sb., 203:8 (2012), 79-96; translation in Sb. Math., 203:8 (2012), 1151-1168 DOI
- Yu.S. Kolomoitsev
Generalization of one sufficient condition for Fourier multipliers
(Russian) Ukr. Math. J., 64 (2013), no. 10, 1373-1380; translation in Ukr. Math. J., 64 (2012), no. 10, 1562-1571 DOI
- Yu.S. Kolomoitsev, R.M. Trigub
On the nonclassical approximation method for periodic functions by trigonometric polynomials
(Russian) Ukr. Mat. Visn., 9 (2012), no. 3, 356-374; translation in J.~Math. Sci., 188 (2013), no. 2, 113-127 DOI
- Yu.S. Kolomoitsev
On one sufficient condition for multipliers in Hardy space
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 23 (2011), 130-135
- Yu.S. Kolomoitsev
On the approximation of functions by generalized Bochner-Riesz means in Hardy spaces $H_p$, 0<p$\le 1$
(Russian) Dopov. Akad. Nauk Ukr. (2011), no. 7, 17-22
- Yu.S. Kolomoitsev
On moduli of smoothness and $K$-functionals of fractional order in the Hardy spaces
(Russian) Ukr. Mat. Visn., 8 (2011), no. 3, 421-446; translation in J. Math. Sci., 181 (2012), no. 1, 78-79 DOI
- Yu.S. Kolomoitsev
On some summability methods for power series in Hardy space $H_p(D^n)$
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 22 (2011), 125-130
- V.A. Gerasimenko, Yu.S. Kolomoitsev
On equivalence of K-functionals and approximation methods generated by generalized Bochner-Riesz kernels
(Russian) Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 922 (2010), 56-64
- Yu.S. Kolomoitsev
On two-sided estimates of approximation of functions by generalized Bochner-Riesz means in $H_p, p\le 1$
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 20 (2010), 116-123
- Yu.S. Kolomoitsev
On approximation of functions by trigonometric polynomials with incomplete spectrum in $L_p$, 0<p<1
(Russian) Zap. Nauchn. Sem. POMI 366 (2009), 67-83; translation in J. Math. Sci., 165 (2010), no. 4, 463-472 DOI
- Yu.S. Kolomoitsev, V.I. Ryazanov
Uniqueness of approximate solutions of the Beltrami equations
Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 19 (2009), 116-124
- Yu.S. Kolomoitsev
Estimates of the best approximation of functions by trigonometric polynomials with spectral gaps in $L_p$, 0<p<1
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 16 (2008), 115-119
- Yu.S. Kolomoitsev
Nikol'skii-Stechkin-Boas type inequality with a fractional derivative in $L_p$, 0<p<1
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 15 (2007), 115-119
- Yu.S. Kolomoitsev
Completeness of the trigonometric system for the classes $\varphi(L)$
(Russian) Mat. Zametki, 81 (2007), no. 5, 707-712; translation in Math. Notes, 81 (2007), no. 5, 632-637 DOI
- Yu.S. Kolomoitsev
On the boundedness of the constant of the best approximation in $L_p$, 0<p<1
(Russian) Tr. Inst. Prikl. Mat. Mekh. NAN Ukrainy, 14 (2007), 117-121
- Yu.S. Kolomoitsev
On moduli of smoothness and Fourier multipliers in $L_p$, 0<p<1
(Russian) Ukr. Mat. Zh., 59 (2007), no. 9, 1221-1238; translation in Ukr. Math. J., 59 (2007), no. 9, 1364-1384 DOI
- Yu.S. Kolomoitsev
On non-comparability of linear differential operators in $L_p$, 0<p<1
(Russian) Vestn. Dnepr. Univ., Ser. Mat. (2006), no. 11, 38-45
- Yu.S. Kolomoitsev
On multipliers and moduli of smoothness in $L_p$ for 0<p<1
(Russian) Dopov. Akad. Nauk Ukr. (2006), no. 1, 17-22
- Yu.S. Kolomoitsev
Some problems of approximation of functions by trigonometric polynomials in $L_p$, 0<p<1
(Russian) Izvestiya of the Tula State University., Ser. Mathematics. Mechanics. Informatics. Tula: TSU, 2005. Vol. 11, no. 1, 160-169
- Yu.S. Kolomoitsev
Description of a class of functions with the condition $\omega_r(f,h)_p\le Mh^{r-1+1/p}$ for 0<p<1
(Russian) Vestn. Dnepr. Univ., Ser. Mat. (2003), no. 8, 31-43