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Abstract: Let [n] := {1,...,n}, 2™} be the power set of [n] and s € [n]. A
family F C 21" is called t-intersecting in (s] if

IX1 NXy, N [S]I >t for all Xy, X2 € F.
Let w: 2*1 5 R, be a given weight function and
Ms(n,t;w) := max{w(F) : F is t-intersecting in [s]}.

For several weight functions, the numbers My, (n,t;w) can be determined using

three important methods of Ahlswede and Khachatrian: Generating Sets [2},

Comparison Lemma [4], and Pushing-Pulling {3]. We survey these methods.
Also, sufficient conditions on w for the equality

M(n, t;w) = Ma(n,t;w)

are presented which simplify the method of Generating Sets. In addition, anal-
ogous conditions are given for the case that |Nxer X| <1 is required (nontrivial
t-intersection).

Applications of these methods include new intersection theorems for chain—
and star products.

INTRODUCTION AND NOTATION

In this paper we give a survey and discuss some new results for and insights
into the problem of determining the maximum weight of ¢-intersecting families
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of subsets of a finite set. The ingenious, relatively elementary methods were
elaborated by Ahlswede and Khachatrian in several papers (2, 1, 4, 3]. Our
aim is to provide a unifying approach such that most of the results are covered.
Since Erdds, Ko and Rado [11] have initiated the study of such problems in
the thirties many results were obtained by several authors. Here we cite only
the recent papers which are related to the new AK-methods. More on the
history of the results can be found in the corresponding papers. Moreover,
in order to avoid too much technical details we describe only one and not all
optimal families though in most cases Ahlswede and Khachatrian also proved
the uniqueness of the optimal family up to permutation of the elements.

Let N be the set of natural numbers, [n] := {1,...,n} and for¢,j € N,z < j,
let [i,7] := {¢,i+1,...,5} Let 27 (resp. ([2])) be the family of all (resp. all
k-element) subsets of [n]. Each subfamily of (%)) is said to be k-uniform. A
family F C 2l is called t-intersecting if | X3 N Xo| > ¢ for all X1, X, € F (1-
intersecting is abbreviated by intersecting). We will suppose throughout that
1<t <n—1. Let I(n,t) be the class of all t-intersecting families of subsets
of [n}].

Suppose that we are given a weight function w : 2"l — R, (the set of all
nonnegative reals). For F C 2["! let

w(F) = Z w(X).

XeF

The weighted t-intersection problem is the problem of determining
M(n,t;w) = max{w(F) : F € I(n,1)}.

In several applications the weight function depends only on the size of the
subsets, i.e. we have w(X;)} = w(Xz) if |X;| = |X2|. In this case we call w
size—dependent and we set w; := w(X) for | X| = 4. Each family F C 2" may
be partitioned into (possibly empty) subfamilies F; = {X € F : |X| = i}.
We put f; := fi(F) := |F;|. The vector (fo,-..,fn) is called the profile of
F. A special case of the weighted #-intersection problem is the size-dependent
weighted t-intersection problem: For w = (wp,...,wn) € R’_’,"_H determine

M(n, t;w) := max{zn:wifi F e I(n,t)} )

i=0
Candidates for the solution are the families

St={XCln]:|XN[t+2r] >t+r),r=0,...,[ %]

which are easily seen to be t-intersecting. Some further candidates are

Sto={XCh:|Xn[t+2r]| >t+r andi < |X] <n+t—i}
U{XQ[n]:|X|Zn-l—t—i},r:O,...,[%‘ij,izt+r,...,[%‘ij.



WEIGHTED T-INTERSECTION PROBLEM 47

In the following we will omit the upper index n if the basic set [n] is clear from
the context. Note that S, = S, ¢4.r.

For instance, ifn = 8,t = 2, w = (0,0,0,0,1,0,1,0,0) we have w(S5; 4) = 45,
whereas w(Sp) = 30, w(S1) = 39, w(Sz) = 43, w(S3) = 28, so these further
candidates should not be forgotten.

In particular, for t = 1, Erdés, Frankl and Katona [12] proved:

Theorem 1. The optimum in the size—dependent weighted 1-intersection prob-
lem is attained at one of the families Sp, S0 2, .. - aso,{lgclj’ and each of these
families 1s optimal for some weight function. |

Unfortunately, we do not have such a general theorem for ¢ > 1. The so
far strongest result is given by the celebrated complete intersection theorem
of Ahlswede, Khachatrian {2] which solves the case w = e; where e, is the
n + 1-dimensional unit vector with 1 at coordinate k, k =0,...,n.

Theorem 2 (Complete Intersection Theorem) Let w = e, k > t. The
optimum in the size—dependent weighted t-intersection problem is attained at

S, r=0,...,|%t], if

t-i)gng(k~t+;)(2+t_l) (1)

T+ r

(k—-t+1) (2+

(with the definition co := 2% for all t > 1) and at SLQ_LT_tJ if

n<(k~t+1)(2+ﬁ—1—). ' (2)

O

We note that (2) is equivalent to n < 2k—t and that in this case S e ) ([’,:]).
Define

g { t ifr=-1
= +1}in . —
T t(jr'zr-)u—"t_l 1fr:0,...,[”TtJ.

We omit again the upper index n if the basic set [n] is clear from the context.
Note that k_; < kg < ... < klm I It is easy to see that an equivalent

2
formulation of Theorem 2 is the following:

Theorem 2a. The mazimum size of a k-uniform t-intersecting family in oln)
is attained at S, N ([;:]), ifkooy < k < keyr=0,...,|%], and at ([21) if
k> kLnT—f.J . 0O

As a direct consequence we obtain:

Corollary 3. Suppose that for some r € {0, ce LRT_':J}

w; = 0 unless k.1 <i<k,. (3)
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Then the optimum in the size-dependent weighted t-intersection problem is at-
tained at S,. |

Remark. If we replace condition (3) by
w; =0 unless kpy <E€<i<k.ornt+t-£<1

then the optimum is atteined at Sy since Sy contains the mazimum possible
number of members from ([’;’]) if © belongs to the first interval and all members
from (M) ifn +t— £ <.

Corollary 3 can be sharpened to the following theorem which will be proved
in Section 6 {the essential steps are given in Example 4 and Lemma 19 which
also provide an independent proof of Theorem 2).

Theorem 3a. Suppose that for some r € {O, e [”T_t_[ - 1}

w; =0 unless kr—1 <1 < Fkryy.
Then M (n,t,w) is attained at S, or Spyi. 0

Let s € [n]. It is easy to see that

SP={XUY:XeS and¥Y C[s+1,n]},r=0,...,|%F],

and that for each i-element subset X of [s] there exist (}77) k-element subsets

Z of [n] such that Zn[s] = X. Since the t-intersection in S} is already realized

in [s] if r < | 25%| we obtain a further consequence of Theorem 2a.

Corollary 3b. Let s € [n] and let w be defined by w; = (3_;). Then M(s,t,w)
s attained at S; if k| §k§k?,7‘=0,...,ts—.‘2’—tj. -0

We mention that we cannot conclude automatically that M (s,t,w) is at-
tained at Si’_tJ ifk>k,_

2 L]

For a succeeding application we change the notation a little bit. We put
m:=n, s:=n, and v = w. Then a special case of Corollary 3b reads:

m—n

Corollary 3c. The optimum M(n,t,v) with v; = ( k—i) is attained at SLEE_tJ

FRP . k<KL e if
(k——t+1)(2+tn;+Jl+l)5m§(k—t+1)(2+fét—1]). (4)
2 2

W]

OPTIMALITY OF THE LAST CANDIDATE FAMILY

Corollary 3c gives a first example of a non-trivial weight function for which
SLE__t [ is optimal. Here we look for other weight functions with the same
2

property.
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The following theorem is due to Katona [15].

Theorem 4. Let t < i < |2H=1| Ifw; = wpysio1 = 1 and w; = 0 for
jé{i,n+t—i—1} then M(n,t;w) is attained at SLP__E_nJ, i.e.

N (pimimn) o1 < 5=
M(n,t;w) = { (ﬂ;l) if i = o=l (5)

]

As an easy consequence of Theorem 4 Engel, Frankl [10] obtained the following:
Theorem 5. If w; < wppteict, i =¢t,..., | 2], then M(n,t;w) is attained

From this theorem we may easily derive that Corollary 3¢ remains true for
all integers m with
n<m<2k-t+1 (6)

since for these m the inequalities

m—n m—n
< =0, ... |»tt=l
(k—z‘)—(k-~n,—t+z'+1)’z 0, |57,
are true.

Theorem 5 contains a fundamental result of Katona [15] as a special case
(w; = 1 for all 7):

Theorem 6. Among all t-intersecting families in onl the family S |25 | has

MaTimum size.

In order to apply the strong Corollary 3¢, Ahlswede and Khachatrian devel-
oped a method which is given in the next theorem.

Theorem 7 (Comparison Lemma) Let P be a set of points in R’_;H"t
whose coordinates are indexed by t,t +1,...,n. Let v € R’_ﬁl_t be a given
positive weight vector. Suppose that there is some f* € P such that

v-ff=max{v-f:feP}
and for some p € [t,n]

=0 dft<i<p (7)
fi £ ff Yp<i<nond feP. (8)
Let w € Ri""l”t be another positive weight vector with the property

v; > Wy

i=1t,...,n—1. (9)

Vigl — Wigl
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Then also
w-f*=max{w- f:feP}

Probably this theorem is not as well-known as it should be. Thus we reprove
it here: ‘
Proof. First we consider the special case

; Wi

= forali=p,...,n— 1.
Vip1 Wil

Then
=2y ifi=p,...,n
Wi é‘é p .
—<-upV'i ifi=t¢,...,p— 1L

Consequently, for all f € P (using (7))

p—1 n
w (F =) = Yl — )+ ) wlfi - f)

i=t

r—1 n
> S Lui(f - f)+ Y 2ulfi - £)
i=t P i=p p

= 2y -2

P

Now we prove the general case by induction on the smallest number s(w) such
that

v; Wi

for all ¢ = s(w),...,n — 1.

Vi Wit1

Just before we treated the case s(w) = p. Let us look at the induction step.
Suppose that

v w v; w; :
€ - 2 puyt 2= —foralli=q+1,...,n—1,
Vg+1  Wgtl Vipl Wi+l
ie. s(w) =q+ 1. Let
: vV, w
o= —4 Fatl
Vo+1 Wy

and let w' be defined by

—

2

w; ifi=qg+1,...,n
. 1= . -
aw; ifi=14,...,q.

Then s(w’) = ¢ and ' satisfies (9) with w replaced by w’. By the induction
hypothesis and (8), for all f € P

w (==t -p+(1-3) 2wl -0 20

i=g+1
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(M

In order to apply Theorem 7 via Corollary 3¢ to some other size-dependent

weighted t-intersection problems we delete from the profiles of the t-intersecting

families the coordinates 0,...,t — 1 {they are obviously zero), we take f* as

the (reduced) profile of SLnT—t Ik and put p := L"—}EJ Then (7) and (8) are

satisfied (note (5) in the case 2{n +t). Note that v; = (7_1) =0if k < i or
m —n < k—+¢ and that

- —n4+1
Y o ik-m4n<i<k-l
Vit1 k—1

Thus we have:

Corollary 8. The optimum in the size—dependent t-intersection problem with
weight vector w being positive at coordinates t,...,n is attained at S[n___t | if
2

there are integers m and k such that
n < min{m,k,m+{—k}, (10)

(4) (resp. (6)) is satisfied, and

Ww; <m—n-.i-1__

1 - (11)

Wig1 k—1
foralli=1t,...,n—1. 0

In general, it is not easy to find such integers m and k satisfying (4), (10),
and (11). One idea is to look for “large” numbers m and k. In order to avoid
long and tedious computations we use the following easy lemma.

Lemma 9. Let a;,b;,cj,d; € Ry,5=1,...,p, and n be a fized number. If
max{ai,...,ap} < min{ei,...,cp}
then there are positive integers m and k not less than n such that
ajk+b; <m<cik+dj,3=1,...,p.
0

Corollary 10. The optimum in the size-dependent t-intersection problem with
weight vector w being positive at coordinates t,...,n is attained at S L5 ] if

t—1

max{ wi ,i:t,..-,n-—l}<1+—-ﬁ.
Wi+1 |25+

Proof. The inequalities (4), (10}, and (11) can be written in the form

ajk+b; <m<ck+d;,7=123,...,n—-t+2



52

where
t—1 t—1
a =2+ ——r——", a =2+ o7
|2z +1 el
as = 1, Cp = CQ,
W .
a; = L4+ 1, cj=00, j=1—-t+3=3,...,n—t+2
Wit1
Corollary 8 and Lemma 9 yield the result. O
We mention that the case w; = o, 1.e. u‘f’il = é = constant was considered

by Ahlswede, Khachatrian in [4], see also E;{a,mple 5.
The idea of looking for large numbers m and & does not always work. Some-
times one has luck since there exist “small” numbers m and k.

Corollary 11. Let w; = (ij),z =0,...,n, and let { > n. Then M(n,t;w) is
attained at & EE

Proof. We apply Corollary 8 with k := n, m := 2n. Then (10) is satisfied, (4)
is equivalent to

2(t -1 2(t—1
Zn———L—-——-)— <2n< 2n+ ( ) if 2|n+t,
n—t+2 n—t
2(t -1
2n <2n< 2n+ —(—-—-—)— if 2 n+t,
n—t-1
hence (4) is satisfied, and finally (11) is equivalent to
¢t ralli=t,. . -1
£—1~ n—1
which is obviously satisfied since £ > n. O

A NEW APPLICATION - PRODUCTS OF INFINITE CHAINS

Let Ne(n,0) := {a=(a1,...,a,) 1 a; EN;i = L...,m ¥ o a; =€} Afam-
ily F C Ny(n,o0) is called (statically) t-intersecting if for all a,b € F there
exist ¢ coordinates iy, ...,i; such that a;,,b;; > 1 holds for j = 1,...,%. Let

Mi(n, 00,t) := max{|F| : F C N¢(n,o0), F is t-intersecting}.

The set Ny(n,00) can be viewed as the £-th level in the direct product of n
chains 0 < 1 < - -- or as the family of all £-element multisets over the basic set
[n]. The property of being t-intersecting means in the case of multisets that
any two members of the family have at least ¢ different elements from the basic
set in common.

Define for a € Ng(n, o) (resp. F C Ne(n,o0)) the support of a (resp. of F)
by supp (a) := {i:a; > 0} (resp. supp (F) := {supp(a) : a € F}). Obviously
F C Ny(n, 00) is t-intersecting iff supp (F) C 2[nl is t-intersecting.



WEIGHTED T-INTERSECTION PROBLEM 53

A fundamental combinatorial formula (combinations with repetitions) says
that for each fixed ¢-element subset X of [n]

[{@ € Ny(n, o0) : supp (a) € X}| = (”i,' 1)-

Deleting from each coordinate of supp (a) a one leads to a bijection between
the sets {a € Ny(n,00) :supp(a) = X} and {a € Ny_;(n,cc) : supp (a) C X}.
Hence, for each fixed i-element subset X of [n]

a e Neln,oo) s (@) = X3 = (TN = ((T0) a2

We define the weight vector w by w; = (ti) and obtain easily

My(n,00,t) = M(n,t;w). (13)

Let Fr := {a € N¢(n,00) : supp (a) € S, }. Clearly, F, is t-intersecting. Define

E.— t ifr=-1
= %%(n+t—2)+t—1 ifr:O,---:lﬂ'ﬁ—"EJ-

It is not difficult to verify that £_; < {; <... < EL%LJ

Theorem 12. ! We have

| Frl if bry SL< Ly

My(n, 00,t) = for somer € {0,...,| 2|}
Flageyl  #E>Engey.

Proof. In view of (12) and (13) we only have to show that M (n, t; w) is attained
at Spif ooy <L< 4y, re{0,..., |22} and at SLnT_tJ if€>£'LnT.tJ.

First let for some r € {D, cees [nTmtJ}

by <LK, (14)

We put in Corollary 3b k£ := £, s :=n, n := n+ £~ 1. Then we obtain our
weight function w; = (7_5) = (gj), and by Corollary 3b, M(n, t;w) is attained

at S, if
EHTL < £ g R (15)
Using the definition of k7 it is easy to prove the equivalence of (14) and (15).
Now let £ > ¢ =k A simple computation shows that this inequality is

2

equivalent to
. n-+i

n—1+2221- if2¢n+¢,

{ n—1+42=L  if2|n+t
2>
n+t—1

!We thank U. Leck for stimulating the study of M;(n,cc,t).
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hence to £ > n. The assertion follows directly from Corollary 11. ]

Instead of Ny(n,o0) one can consider Ng(n, k) := {a = {a1,...a,) : a; €
{0,1,...,k},i=1,...,n,> ., a; = £} — the £-th level in the direct product of
n chains 0 <1 < --- < k. We take the same t-intersection property as before
and define

Me(n, k,t) ;= max{|F| : F C Ne(n, k), F is t-intersecting}.

It seems very difficult to determine this number in general. The following
asymptotic result of the authors generalizes previous work from [10].

Theorem 13. For every t > 1 (resp. for t = 1) there exist real numbers
0= At,—l < At,O < At,1 <L v (resp. 0= /\1,_1 < )\1’0) with lim, o )\t,.,- = /\1,0
such that the following holds. If k, t and X are fized and n tends to infinity
then

a’) M[An](nak)t) ~ |fT| z.f/\t,’.!"—l <A S ’\t,r:
b) M{An}(n:k:t) ™~ %IN[)\nJ(n: k)l if A= /\1,0;
C) M{)\nj (TL, k}t) ~ INI_AnJ (n:k)l Zf)‘ > )\1,0'
Here, of course, Fr := {a € N nj(n, k) : supp (a) € S, }. O

The proof uses Corollary 3 and (in the case A = A¢ ) Theorem 3a. See [8] for
details.

THE METHOD OF RESTRICTED INTERSECTION

In this section we present a method which can be considered as one key for
the proof of many intersection theorems, in particular also of Theorem 2. It is
based of but simplifies the original method of generating sets by Ahlswede and
Khachatrian [2].
Let s € [n] and F € 2. We call F t-intersecting in [s] (briefly s-t-
intersecting) if
|X1 NXyN [S]! > tforall X;, X2 € F.

Let I,(n,t) be the class of all s-t-intersecting families in 2", Given a weight
function w : 2171 — R, | the weighted s-t-intersection problem is the problem of
determining

My(n, t;w) := max{w(F) : F € I;(n,t)}.
We define a new weight function wn_y4 : 2l 5 R, by
wnos(X) =w{{Z Cn]: Z2n[s] = X}).

Note that w,_,, is size-dependent if so is w. We then put for |X| = 4,7 =
0,...,s,
wn—}s(i) = wn—)s(X)-



WEIGHTED T-INTERSECTION PROBLEM L)

Obviously,
M(s,t;wnos) = My(n,t;w) < M(n,tw). (16)
Moreover, for s; < 89 < 83 and X C {s4]
Weg—s; (X) = (‘USS—Mz)sg—;sl (X). (17)

Using (16) and (17) one can derive that

M(S: tiwnss) = Ms(s + 1,t;wns41)
<M(s+ 1, t;wpyse1) = Mep1(8+4 2,8 wnasp2) < ..o (18)
<SMn -1, twpan-1) = Mp_1(n,t;w) < M(n,t;w).

In the following we will study the question when the inequality in (16) does
hold as an equality. Because of (18) it is enough to look for sufficient conditions
for the equality
Mn—l(nat;w) = M(n,t,w) (19)
First recall the shifting-operation s; ; - 22" 5 92" defined for 4,j € [n] by
Si,j(f) = {Si,j(X) : X € F} U {X X € J:,S,;‘j(X) € .7'_},

" where (with the same notation) s, ; : 2(" — 2[" is given by

Coxy.o [ X\{PUf{i}, ifjeXandi¢ X
30 (X) 1= X otherwise.

It is well-known (cf. [13]) and can be easily checked that
$:,;(F) is t-intersecting iff F is t-intersecting. (20)
When studying (19) we will apply only s; »,% € [n—1]. Obviously, s;,(F) = F
or s;n{F) contains less members having n as an element than F. Iferated
application of s, ,, (with all possible i’s} yields a family ' with the property
sin(F')=F forallie€n—1].

We call families with this property n-shifted. Let I*(n,t) be the class of all
n-shifted ¢-intersecting families, and

M*(n,t;w) := max{w(F) : F € I*(n,t)}.
Supposition 1. For alli € [n — 1] and A C [n]
w(A) < w(s;n(A4)).

It is easy to see that under this Supposition M*(n,t;w) = M(n,t;w). In the
following we require the weight function w to satisfy Supposition 1. Note that
this is always true if w is size—dependent.
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Now assume that
M{n,t;w) > M,_1(n, t;w). (21)

We will look for further suppositions such that a contradiction can be obtained.
Choose among all optimal t-intersecting families, i.e. w(F) = M (n,t;w),
one for which the set

R=R(F):={Xe€F:neX X\ {n}¢F} (22)

has minimum cardinality (note that R # @ since otherwise F would be already
t-intersecting in [n — 1] in contradiction to (21)). We may assume that F has
the following property:

ng XeF,XCY impliesY € 7. (23)
Then, by Supposition 1, the choice of F, and (23), F is n-shifted. Let
Ri:={X €R:|X|=1} and R} := {X\{n}: X € Ri}. (24)

Tt is not too difficult to verify that |[XNY| > tforall X € RjandY € F\Rnti—s
(use that F is n-shifted t-intersecting). Hence, for any i € [¢, ZFE) the two
families

Fri = (F\Rnpe—i) UR],
' 25
.7'-2,7; = (.7: \ Rg) U R;’L-i-t—’l: ( )
are t-intersecting and we have
w(F) > w(F) iff w(R}) > w(Rntt-i), (26)
IR(}—IJZ” < |R(‘F)1 il ‘R # 0 or Rn+t—i 75 @, (27)
w(f%i) > w(F) iff w(R;z—]-t-—i) > w(Ri), (28)
IR(?‘L;)] < IR(.?)I iff R; -’,'é @ or Rn.{_t_n; 7é . (29)

Hence we obtain a contradiction if (26) and (27) or if (28) and (29) hold since
otherwise Fi ; or Fa; would be “better” than F.
This leads us to the following second supposition (with the definition AU

{a} :={AU{a}: A€ A}, AC 2ln]y,

Supposition 2. For all j € [t, %), A C ([Tj‘::ll]), B C (nft‘:;]_l) not both
inequalities are valid:

w(d) < w(BU{n}),
w(B) < w(AU{n}).

Under Supposition 2 we obtain R; = @ for all i € [t,n]\ {24t} which yields the
contradiction R = 0 in the case 2+t n + t. Thus we need a further supposition
such that Rage # @ leads to a contradiction.

Case { = 1:
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Let A € Ruye and A= A\ {n}. Let B :={n~-1\ A, B:=B U{n}. I
B ¢ Rate (which implies B ¢ F) then F' := F U {4’} is also t-intersecting,
but w(F') > w(F) and [R(F')| < [R(F)|, a contradiction. Thus B € Rage.
Let

Fio= (FA{BHu{4},

F = (F\{A})U{B}. (30)

Obviously F; and F, are t-intersecting and

w(Fi) = w(F) iffw(d)2wB),
w(F2) 2 w(F) iffw(B)zw(4),
R(F) < IR(F), i=12

This leads us to the following supposition which yields in the case £ = 1 the
desired contradiction.

Supposition 3.1. For all A € ([2 11}) not both inequalities are valid:

2

w(4) < w(n]\4),
w(ln — 1]\ 4) < w(AU{n}).
Supposition 3.1 is true if w(A4) > w(AU{n}) for all A C ([7;;]).

Case t > 1 and the weight function w is size dependent, i.e. there is some w
such that w(X) = w; for all X with |X| = j.
We have by double counting

n—1 n—t
Z z w(X) Z Z w(X) = —Q—_W(Rn;t )-

i=1 XE'Rn_é,_t:ng XE'R,_-{_ jEn—1]:3¢X

Hence there is some j € [n — 1] such that

n—1
xeni;jﬂw(x) 2 on— 1)“’(73"7*)‘ (31)

Let 7 := {X € Rap cj ¢ Xtand 77 := {X\{n}: X € T}. By the
size—dependence of w, (31) is equivalent to

lTIUJn >

e R
“Q(n—l). i

Wntt . (32)

It is easy to see that

F o= (}—\RE{_;)UTUT' (33)
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is t-intersecting,
RFOI < IR(F)| i Rage #0,

and that w(Fy) > w(F) is equivalent to the following inequalities

W +w(T) > wRaw),

- 2

‘TI (wl%tg-l"wg;ﬂ_l) > lR"TlenT-H (34)

Thus we obtain the desired contradiction in the case Ruge # @ if (34) holds.

Finally we claim that the following supposition for our candidate families is
sufficient for (34):

Supposition 3.2. We have

W(Sﬁi—i—l) > W(SnT_:) (35)
Indeed, we have
n+t
Saztoy\Sapt = {XQ[H—Q]-IXlz 5 -—1},
Sn_;_t_\SnT—t_l = {XU{n—l,n}:X(;[n_g],IX‘:n_;'_E_Z}_

Hence (35) is equivalent to the following inequalities:

n—2 n—2
nt _p)@sto1 2 \npt g /Wt
2 2

n+t—2
wg_2+_t_1 2 ——n—_-%-—wn;:. (36)

From (32) and (36) we obtain (34).
Herewith we proved the following theorem:

Theorem 14. We have M,_1(n,t;w) = M(n,t;w) if Suppositions 1, 2, and
8.1 (if t=1) or Suppositions 2 and 8.2 (if w 1s size dependent) are true. In
the case n 4+t odd already Suppositions 1 and 2 (resp. only Supposition 2) are
sufficient. ]

Note for all £ € [t + 27 + 1,n] the following two facts:

1) If w(Z) < w(s;e(Z)) foralli € £—1], 2 C [n] then also wpe(X) <
wnose(sie(X)) forallie [0 —1], X C[f] .

2) W(S?) = wnoe(Sy) forall g € o, | 52]].

Hence, iterated application of Theorem 14 together with (18) yields:
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Theorem 15. Letr € {0,...,|2=t=L|}. We have
Mt+21~ (n, t; QJ) = M(TL, t; Ld)

if t = 1 and conditions (i), (i), end (ii.1) are satisfied, or if t > 1, w 1is
size—dependent and conditions (%) and (i11.2) are satisfied, where

(i) For all£ € [t+2r+1,n],i€[£—1], AC[n]

(.d(A) S w(s,:,g(A)).

(i) For allf € [t+2r+1,n],i€[t, &), AC (&), BC (,L1)) not both
" inequalities are valid:
Wpot(A) < wanae(BU{L}),

(i#1.1) For all p € [r +1, ['ﬂ—i’—l“ A€ ([2;]) not both inequalities are valid:

Wna2o+1(A) < wnozps1([20 + 1]\ A),
wn—+‘29+l([29] \ A) < Wpo2p+l (A U {29 + 1})

(i3i.2)
W(S) 2 w(Sri1) 2 o 2 (S gt )

Remark.
a) The following condition (iv) is sufficient for (i) and (¥i1.1).
(iv) For all £€ [t +2r + 1,n], A € 2"
w(A) = w(AU{£}).

b) In the case of size-dependence the following conditions (i) and (14.2°)
are sufficient for (i) and (iii.2), respectively (recall (35), (36)).

(i°) For all £ € [t+2r+ 1,n}, i € [t, 1)
Wnoso(i = Dwpoe(f+t —~ 1 — 1) 2 wnye(i) waoe(£ 4t —1).

(iii.2°) For all p € [r +1,|25¢]]

t—1
wn—>t+2g(t +o— 1) > (1 + T) wn—>t+2,g(t + 9)-



60

Example 1. Let w = eg, k > t. Then wp_,(1) = (7 . 2) A simple computa-
tion shows that (4’) is satisfied if n > 2k — ¢ and (44.2°) is satisfied if £ < k.

Example 2. ? Let w = e; + €g41, k > t. Then wne(d) = (5~ E) + ( n—£ )=

k41—
(’,:+f+1). As in the previous example, (i’) is satisfied if n +1 > 2(k + 1) - ¢

(ie. k+1< k’fﬂl tJ) and (444.2°) is satisfied if kK + 1 < k*+t!. Together

with Corollary 3¢ we obtain that &, is optimal if k:}fll <k+1<krM r=
0,...,|25t]. fk+1>k7F!, | then k> k™, ., , hence Sj.— is optimal.
2 | =5t ]-1 "5

=]
Example 3. Let w; = (ij), £ > t (compare with (12)). Then wy (i) =
(*75T471). A simple computation shows that (i) is satisfied if n > £ — ¢ +1

and (%1.2°) is satisfied if £ < £,.

Example 4. Let wy =0 unless k < k.. Note that then wy # 0 implies n >
2%k — t. We have wn_e(6) = Spro wi (77F). Then (i) reads:

J1k=0 J,k:()

Using j + k —t < n it is not difficult to verify that

n—4£ n—~¢ S nwf( n—{
it \k—b—t+i+l) T \j—i)\k—l—t+i

for all 0 < j,k < k.. Consequently, (7’) is satisfied. Using Example 1 it is easy
to show that also (7ii.2’) is satisfied.

Example 5. Let a be a positive real number and w; = a™*. Then wy, () =
a”*(1 + a )" ¢ and (i’) is satisfied if @ > 1. Further, (74.2°) is satisfied
if @ > 14 &, Together with Corollary 10 we obtain that S, is optimal if

14 &1 1 >« > 1 + ;*_—1

This example has the following application: For a,n € N consider the set
H? .= {a = (a1,..-,a) : a; € {1,...,a}}. On HZ one has the Hamming
metric dg which for two tuples a, b counts the number of different coordinates:
dy{a,b) = |{i : a; # b;}|. As usual, for a subset F of H} the diameter d(F)
is the maximum possible distance between two clements of F. Let d € N. We
are interested in the following diametric problem: Determine the maximum
cardinality of a set F C H? with diameter d or less. The complete solution was
given by Ahlswede and Khachatrian [4]. Independently, Frankl and Tokushige
[14] proved the following t-intersection version.

2This result was communicated to us by L. Khachatrian.

erww n—4 n—1¢ S i " n—~¢ n—{¢
R G i1kttt rir1) T L TR G k-l —t+i)
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Call a set F C HT t-intersecting if any two tuples of F agree in at least ¢
coordinates. Obviously, subsets of HZ with diameter at most d are (n — d)-
intersecting and vice versa. Thus the diametric problem is equivalent to:

Determine M (n,a,t) := max{|F]: F C Hy, F is t-intersecting}. (37)
Define for i, j € [a], ¢ € [n] the operation s; ;. : 2Ha — 282 by
$i5.c(F) = {sijcla):a € FtU{a € F:s;;.a) € F}, (38)

where (with the same notation) s; ;. : Hy — HJ is given by

. — (a‘11"')aC—l:iaaC+1)--'aan): ifac:j
Sije(a) = { a otherwise. (39)

It is easy to verify that this operation respects the t-intersection property.
Furthermore, if s; ; .(F) = F for all 4, §, ¢, i < j, then any two tuples of F have
entry 1 in at least ¢ common coordinates. It follows that the determination
of M(n,t;w) with w; := {a@ — 1)"* suffices for (37). Thus, Example 5 shows
that one of the candidates S, is optimal. We refer to [4] for more details and
background.

Let us generalize the previous application. For a = (a1,...,an) € N?
consider the set F, := {a = (a1,...,a,) : a; € {0,...,;}}. We define an
order relation on F, by a < biff a; =0 ora; = b; foralli =1,...,n. Then
F, is a ranked partially ordered set, isomorphic to the direct product of n
stars 0 < a1, 00,...,04, 1 = 1,...,n. Let Ny(a) be the k-th level of Fy, Le.
Ni(e) = {a € Fq : |{i : a; > 0} = k} and define Wi(a) := [Ni(a)| (note
that if @ ;= @] = a; = - = a, then Np(a) = HY). A family F C F, is
called t-intersecting if for all a,b € F there exist t coordinats 4;,...,% such
that a;; = b;; > 0 holds for j =1,...,1 (i.e. the infimum of @ and b in F, has
rank at least t). Define

Mi(n, a,t) = max{|F| : F C Ni(a), F is t-intersecting}.

For K C [n] let mg : N* — N*—1&1 be the projection map onto the coordinates
that are not contained in K. Define w : 2"l — Ry by

w({iln “re ;'h'n}) =Wi_m (ﬂ-{h,--.,im}(al —1,...,0n = 1)) : (40)

Using the operation s; ;. : 2F= — 2F« defined by (38) and (39) one can derive
that
Mi(n,a,t) = M(n, t;w). (41)

Example 6. Let o := a1 = ... =ap > 2,n >k, and w asin (40). Then w is
size—dependent. Let us use the abbreviation

Ny (- 1)%,08) = Ne(g = 1,...,a —La...,a),
~ ~ e
a b
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and similar for Wy, ((a — 1)*,o%). Then
u.)n__;g(‘i) = Wi ((a - 1)£—i,an—f) ;

It is easy to see that wp_z(i—1) > wn—e(2) holds for all 4, hence (i4') is satisfied.
Furthermore, purely numerical considerations show that w(So) > w(S1) holds
iff (44.2) holds for r = 0 iff

n> [(k—t+a)(t+1)J_

(83

(42)

It follows that in this case the family Sp is optimal for (41). See [6] for details.

In the general case we do not know whether always one of the families &, is
optimal. However, one can prove the following [5]: If «, ¢ are constant and n is
sufficiently large then it holds (for all k)

Mi(n,a,t) = maxw(S;).

Example 7. Let t = 1, a; < a2 < ... < ap, and w as in (40). Then (¢) is
clearly satisfied. It is easy to see that (tv) is satisfied if s y2r41 > 2. It follows
that Sp is optimal for (41) (with ¢t = 1) if @y > 2. Using Theorem 1 one can
also deal the general case 1 = a; = ... = am < Q1 < ... < Oy, Se€ [7] for
details.

NONTRIVIAL T-INTERSECTION

A family F C 2 is called nontrivial t-intersecting ( resp. nontrivial t-
intersecting in [s], briefly nontrivial s-t-intersecting, s € [n]) if it is {-intersecting
(resp. s-t-intersecting), and if

< t. (43)

M X

XeF

Let I(n,t) (resp. I;(n,t)) denote the class of all such families.

Suppose we are given a t-intersecting family F such that |X| > ¢ for all
X € F (e.g. a k-uniform t-intersecting family with k£ > ¢). Then the family
Fu{[n)\ {i} : i € n} is nontrivial ¢-intersecting. Thus, dealing with optimal
nontrivial t-intersecting families with respect to some weight function w, the
intersection in (43) should include only sets X € F with w(X) > 0.

We require the weight function w : 2ln] - Ry to satisfy the following sup-
position:

Supposition 4. w(X) > 0 implies w(¥) > 0 for all Y € 2 with |Y| = |X]|.
Let Q := Q(w) == {i : w({i]) > 0} and for F € 2"} let
Fa=|JFi={X € F:w(X)>0}

€82
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Note that for s € [n — 1] the new weight function w,,, s satisfies Supposition 4
if so does w. Moreover, we have

i € Qwnoys) iff [, +n ~ sjNQYw) # 0. (44)
Finally, we define
M(n, t;w) = max{w(F): Fq € I(n,t)},
M,(n,t;w) = max{w(F): Fq € L(n,1)}.

Note that

M (s, t;wnas) = Ms(s + 1, twnss11)
< M(s+1, t;wn—}s-I-l) = M4 (3 + 2, bwnsst2) S (45)
<M —1,twnsno1) = Mp_1(n,t;w) < M{n,t;w).
In this section we shall study the problem of the determination of these num-
bers. We will see that the method of restricted intersection works as well.
We may always suppose that n > ¢+ 2 since obviously I(n,n—1) = I(n,n) =
0

Let us look at candidates for optimal families. Clearly

S (s,

are nontrivial ¢-intersecting if 2 # {n}. Furthermore, for T C [n] let
Gr={XCn]:TCX}U{ln]\{5}:7€T}
and
G = Gr if [T >t
T=Y ¢ \{T} if|T|=t

It is easy to see that
Gr 26 f T C T, |T| > ¢, (46)

where equality holds iff [T| =t and n =t + 2.
Note that (Gr)g € I{(n,t) if n — 1 € 1.

Theorem 16. We have forn >t + 2

. . M, 1(n,t;w) fn—1¢Q
M(n,t;w) = max{Mn_l(n,t;w), w(Gr): T € ({”;1])} ifn—1€

if Supposition | and the suppositions from Theorem 14 are satisfied.

Proof. We proceed as in the previous section. Assume that

M(n, t;w) > Mu_i(n,t;w).
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Choose among all t-intersecting families F with Fq € I(n,t) and w(F) =

M(n,t;w) one for which
R:=R(F)={XeF:necX,X\{n}¢F}

has minimum cardinality. Note that R # 0. We may asume that F has
property (23).

Claim: F is n-shifted.

Assume the contrary. Then the set

In :={i € [n]: ssn(Fa) # Fa}

is not empty since otherwise évery family s; ,(F) with s; ,(F) # F would be
“better” than F. Also, we have for all 2 € I

N X|=t (47)

Let S := [\xexr, X- Then (47) implies (for all < € Io)i,n¢ S,|S|=t—1and

N Xx=5u{i (48)

Xesi,n.(fﬂ)

1t follows that for all i € I there exist sets X;,Y; € Fq such that X;N{¢,n} =
{n}, Yin{i,n} = {i}. Further, for all i € Iy and Z € Fq we have ZN{4,n} # §.
Since F has maximum weight we must have (for all ¢ € Ip)

ZeFqift SULi,n} C 2, |2 € (49)

Note that for all ¢ € I we have |X;| < n — 2 or |¥j| < n — 2 since otherwise
[n —1],[n]\ {i} € Fa in contradiction to (48).

Clearly In C [n— 1]\ S. Note that |[n — 1]\ S| > 2 since n > ¢ + 2.
Case |[,| =1:
Let Io = {i}. We have j € X; for all j € [n - 1]\ (SU {i}) since otherwise
i,n ¢ s;n(X;) € Fq which contradicts (48). Thus X; = [n] \ {i}, in patticular
n — 1 € . By property (23) (applied to Y; € Fq) we have also [n — 1] € Fn, a
contradiction to (48).
Case Ig =[n—1]\S:
Let i € In. We have Y¥; = [n — 1] since otherwise j,n ¢ Y; € Fq for some
j € Iq, a contradiction to (48). In particular, [Y;| = n —1 € Q. By (49) we
have also [n] \ {¢} € Fq, again a contradiction to (48).
Case |[g} >2and In C [n — 1]\ S:
Let i,j € In, 1 # j, and k € [n — 1} \ (SU In). Then (49) implies that
there exists a set Z € Fq such that SU {¢,n} C Z and j,k ¢ Z. But then
i,n & s,.n(Z) € Fq, a contradiction to (48).

Hence in all three cases a contradiction is obtained, this proves the claim.
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Let now
T = ﬂ X, =T
Xe(F\R)a

Case 7 <t:

In (25), (30), and (33) we constructed families by deleting some members of R
from F and adding some new members such that the new families are still ¢-
intersecting. Since we did not change 7\ R the new families are even nontrivial
t-intersecting and we may argue exactly as in the proof of Theorem 14.
CaseT>1t:

For all X € Rg we have

either T'C X or X = [n]\ {j} for some j € T. (50)

Indeed, otherwise there would exist two elements ¢ € [n], j € T such that
i,j ¢ X. Since F is n-shifted s; ,(X) € (F\ R)q. Clearly j ¢ s;»(X) which is
a contradiction to j € T C s; »(X). Note that in the case [T| = ¢t the set T is
not an element of R since otherwise T' C X for all X € F which is impossible
since Fq is nontrivial t-intersecting. By the definition of T and (50) we have
Fa C Gr. But then, recalling (46) and the optimality of F, w(F) = w(Gr) for
some T’ € (”;1). Note that in this case necessarily n — 1 € §} since otherwise
Fqo would not be nontrivial ¢-intersecting. )

Note that for i ¢ T, € € T the relation

Ge: 1) = 5i,0(0T)

holds. Thus, under Supposition (i) from Theorem 15, it is enough to consider
sets T from ([Hf"]).

In addition to the candidates Gr we define for T € ([tﬁf’"}), ¢ e ft+ 2rn,
r>1

Gre={XCP:TCX,(\T)nX #8j
WX Cn]:[\TC X, |XNT|=t—1}

We define further Gprnt1 1= Grn-
Let wmax := max{i : i € Q}. Iterated application of Theorem 16 together
with (44) and (45) yields:

Theorem 17. Letr € {1,...,|2=t=2|}. We have

M(n, t;w) =
Mipor(n,t;w) if Wmax < t 4+ 2r
max {MHg,.(n,t;w), w(Gry) : T € ([Hfr}), f€ [t+2r+1,wmax+ 1]}
tf Wmax = T+ 2r

if Supposition 4 and the suppositions from Theorem 15 are satisfied. O
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For applications, the most important case is if r = 1. Since Mypa(n,t;w) =
w(S1) and Sy = Gy 442 the determination of M (n,t;w) reduces then to a purely

numerical problem: Find the maximum of all numbers w(Gry), T € (Ht'z),

€ € [t+2, Wmax + 1). Note that if w is size-dependent then w(Gr,¢) = wn—e(t) —
Wne(t) + twnse(f —1). ‘

In general, one has often M(n,t;w) = w(S;) for the smallest r for which the
conditions of Theorem 15 are satisfied. If 7 > 1 then also M (n,t;w) = w(S,)
since S, is nontrivial ¢-intersecting.

Example 8. Let w = e, t < k < ky. Then one can take 7 = 1 in Theorem

17. We have
n—t n-—{ n—4£
w(Gee) = (k—t) - (k—t) +t(k—e+1)'

A unimodality—argument (see [1]) yields
M(n,t;0) = max {w(Gpg,e42)> WGl k+1) ) -

Example 9. Let w; = (z ~1),¢ < € < {;. Then one can take r = 1 and we have

n—t+£-1 n—s+£€-1 n—s+£f-1
‘”(g[‘]’s)_( 0—t )'( 0t )”( £—s+1 )
As in Example 8 one can show that
M(n,t;w) = max {w(g[t],t+2): W(g[t],z+1)} .

Example 10. Let w; = o™}, a > &L, Again, one can take r = 1. We have

w(Gy,e) = a t(1+a "t - a_t(l +a~ )t N1+ a~ )t
It is not difficult to verify that
M(n, t;w) = max {w(g[t],t+2)1 w(g[t},n)} .

Example 11. Let o :=a; = ... = ap = 2, n > k, w as in (40), and let the
equivalent conditions of Example 6 be satisfied. Then one can take r = 1. It
holds

W(Gpae) = Wit (@) = Wiy (@ — D)*75, 0™ ) +t W1 (@ — L,a"79) .
We have also in this example
M(n: taw) = max {w(g[t],t+2): w(g[t],k+1)} .

Indeed, let us show that w(Gyy¢) < w(Gy,e+1) implies w(Gp,e41) < w(Gpg,e42)-
Using

W; ((a - 1)4, ab) + Wit ((cx - 1)"'+1,ab) = Wit ((a -~ 1)9, ab+1) (51)
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our claim reads:

tWi_er1 (@ — D%,6" 1) < Wiiiy (@ — D)0
implies

t Wit ((a = 1)%,07772) < Wiy ((@ = D)7 am7072)
But this is true since the map

T Nego (0= D577 % Nieg ({0 = 1)%,0777%) —
Ni—t-1 ((a — 1)1 " =1=2) 5 Ny_p4q ({0 — 1)2,0"t1)

defined for @ € Ng_y—1 ({@ — 1)¥ 7%, a4 1), b € Ni—g (o — 1)7, am—t-2) by

r(a,b) = (@1, -Gty Qbmitly-- -1 @nt—1,0,1) il ag s <a
’ (a'la"')a'f—t:]-)aﬂ_t+23'--:a’n—t—“lybaz) if Qg1 = &

is injective.

The two previous examples have the following application. Recall the par-
tially ordered set F, defined in the previous section (before Example 6). Here
we deal only the case a := a3 = -+ = a,(> 2). A family F C Fy is called
nontrivial t-intersecting if it is t-intersecting and if the infimum of all members
of F has rank less than t. This means that the set

{i:a;=b;>0foralla,bec F}
has cardinality at most t — 1. Define
Mg (n, o, t) = max{|F| : F C Ni(a), F is nontrivial t-intersecting}.

We suppose that k > ¢ + 2 since otherwise there are no such families. For a
tuple a € F, let the support of a be given by

supp (a) := {i: a; = 1}.
Then we have the following nontrivial t-intersecting candidate families:
Fr = {a € N(a) : supp(a) € S;},7 > 1.

Recall that
Mk(n‘)al t) = M(‘Tl,t,(.d)

with w; = We—i((a — 1)779).
Now Example 10 and Example 11 solve the uniform nontrivial {-intersection
problem in F,. This is clear with the next Lemma.

Lemma 18. We have Mi(n, a,t) = M(n,t;w).
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Proof. Let F be a maximum k-uniform nontrivial t-intersecting family in Fl.
It suffices to show that _
|F| < M(n,t;w). (52)

Recall the operation s; ;. : 2F= — 2F= defined by (38) and (39). We know that
|5: 5.c(F)| = |F| and that s; ;.(F) is t-intersecting for all i, 7, k. Let

L= I(F) = {(,0) 1 i < j < 0 € [l 0, (F) # F).
If I = () we are done since then the family
{supp (a) : @ € F} C 21"

is easily seen to be nontrivial ¢-intersecting.

Thus let I # §. We may assume that s; ; .(F) is not nontrivial t-intersecting
for all (7, 7, ¢) € I (otherwise keep applying the corresponding operations s; ;).
Then the set

T:={i:a;,=b;>0foralla,beF}
has cardinality ¢ — 1. Let wlo.g. T = [t — 1] and a; = 1 for all @ € F,
i € T. Moreover, for all (i,7,¢) € I and all @ € F we have a. € {¢,7}, and
there are a,b € F with a, =i and b, = j. We have { = 1 for all (7,j,¢) €
since otherwise also (1,7,¢) € I and sy ; .(F) would be nontrivial {-intersecting.
Analogously, we have 7 = 2 for all (4,7,¢) € I. Define

C:={c:(1,2,¢) € I}

W.log. let C=[t,t+4q],¢=0, ...,n——t.
Case [C] > 1, ie. ¢> 0.
We will show that |F| < |F;| which implies (52).

Note that there are not a,b € F with a; = 1,by = 2 and a; = b; for all
i > t since otherwise b € s10:(F) and hence s12,:(F) would be nontrivial
t-intersecting. Consequently, recalling that for all @ € ¥ we have ay = --- =
ar—1 = 1 and T P/ A X = {1,2},

17| < 29Wi_i_o(0® 870 < 29070 IW, ;1 (@™ < 2Wimg (@™ 7071,
Note that
|Fil = (t + 2D Wi—t—1(o — 1,07 2) + Wiy (@™ 777).
Hence, using (51), |F| < |F1| follows from
Wi (") = 2(Wemrma(a = 1,a™7) + W2 (@)

< (4 QWhoimr (e — 1,073 £ Wi—e—2 (™ 172).

Case |[C| =1,1e. ¢=0.
Define for £ = 1,2 the (nonempty) families

He:= {supp(a)\[t] :a € F, a; = £}.
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Since (1,7,c) ¢ I for all ¢ > t, j € [a], H1 and H; are cross-intersecting, 1.e.
HIF‘IH;;?,/-‘@fOI' all Hy € Hqi, Hs € Hs. (53)

Also, since F is nontrivial ¢-intersecting,

N H=0 (54)

HeHUH2

Since |F| is maximum, we necessarily have

F = U {a € Ny(e) : [t — 1] C supp (a), as = ¢, supp (@) N[t + 1, n] € He}.
ee{1,2}

We apply the shift-operation s; ;, t < ¢ < j < n, simultaneously to H; and
Ho. It is easy to see that s; ;(H1) and s, ;(H2) still satisfy (563). Let F;; be
the family which corresponds to the pair s; ;(H1), s:;{H2), i-e.

Fij = U {a € Ni{a) : [t — 1] Csupp(a), a; = ¢,
2€{1,2}
supp (@) N[t + 1,n] € 5:;(He)}

Note that |F; ;| = |F|. If

N H#0

Hes j{H1)Usq, ;(H2)
then we have a; = 1 for all @ € F; ;. Consequently,
IF| = |Fijl < 2Wiema (@) < A

which again implies (52). Hence we may assume that s;;(#1) and s;;(Hz2)
also satisfy (54). We now continue the shifting until we obtain a family (also
named F) for which the corresponding families H; and H2 are left—shifted in
[t + 1,n], ie. s;(He) = Heforallt+1 <4 <j<n =12 DButthen

there are obviously a,b € F with a; = 1, by = 2, apqy = b1 = -+ = a = bg,
Gky1 = brp1 = -+ = an = b, = 0. Now (52) follows since sy, ¢(F) is nontrivial
t-intersecting and I(s1 2.+(F)} = 0. 0

PUSHING-PULLING

Beside the method of generating sets {2, 4] Ahlswede and Khachatrian de-
veloped another proof method, called pushing-pulling, which was used in (3]
to give a (new) proof of their Theorem 2, and a proof of Katona’s Theorem
6. Since it seems difficult to find general suppositions on w under which the
pushing-pulling method works, we shall stay quite closely to the original ar-
guments in {3]. This section finishes the proof of Theorem 3a. We will also
deduce Theorem 5.
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Recall that a family F € 2" is called left—shifted if
s;;(F)=F foralli,j € [n],1 <.
Let £ € [n]. A family F € 217l is called invariant in [£] if
8;(F) = F for all 4,j € [£].
Lemma 19. Let t > 2. Suppose that for some r € {0,...,|%*]}
w; = 0 unless kr—1 < 1.
Then there is a left-shifted optimal family which is invariant in [t + 2r].

Proof. First we deal with an arbitrary (nonnegative) weight vector w. Among
all left—shifted optimal families F choose one for which

¢:= 8(F) := max{i: F is invariant in []}

is maximum. We may assume that w; = 0 implies f; = 0.
Now we assume that £ < t + 2r and look for a contradiction. Let

L = LF)={XeF: se41,:(X) ¢ F forsome 1 <1 < £},
L; = {Xel:|Xn[f =i},

£ = {X:2+1€X and s;e41(X) € L for some i € {{]},
£o= {Xel:IXn[fl=i-1}

The set £ (and hence also £') is not empty and invariant in [£]. Hence,

w(Lly) = (f) Xg?wlxm and w(L;) = (Z f 1) > wixjps (55)

XeLs

where
Lr={XN[+2,n}: X €L}

Tt is not too difficult to verify that [XNY| > tforall X € £iand Y € F\Leyi—s
(use that F is left—shifted, invariant in [{], and t-intersecting). Hence, for any
i € [t, &t) the two families

Fui = (F\Lews—i) UL,

¥

Foi = (FNL)U Lo g

El

are t-intersecting and since F is optimal we have
W(L) < w(Lepe—i) and w(Lige ) < w(Li). (56)

Tt follows that £; = 0 for all ¢ € {¢]\ {4t} because otherwise (56) together
with (55) yields
l+t—i)<{f—i+1D(E+1-1),
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which is easily seen to be false since ¢ > 2.
It follows 2 | £+ since otherwise we have £ = {§. The assumption £ < t + 2r
then implies
£<t+2r—2. (57)

Suppose that we find an intersecting subfamily 7~ of £},. which satisfies
2

£
erT* wlxi+£ji-_t_ —t+2 _ ((£+t)/2)

= . (58)
ZXECLF W) x |4 ekt 2(6+1) ((eit)l/z)
Let
T = {X€Lep : XN[+2,n]eT"},
T = {Xeﬁ’gzi :XNE+2,n]eT).
Then, as in (55),
oM = (i) T s (59)
€+0/2)
A7) = (eroppn) 2 e (60

It is easy to see that
Fii= (F\Leg JUTUT

is t-intersecting. But (58) together with (55), (59), and (60) yields
w(T) +w(T") > w(leg),

hence w(F) > w(F), a contradiction.
Now let w satisfy the hypothesis of Lemma 19. We have by double counting

> > Wixjetgt = >, (‘*ﬂxH%)le-

i€[€+2,m] XEC"{_?:'EEX XeLr

- Hence there is some i € [£ 4 2,n} such that

1
D Wy 2 aTpoT 2 (“’|xu+%ﬂ) X 6D

XeLlr , ieX XeLy

4 24
F T S ()
n—£f—1 Fixpesgt )
XGL“_;_%__1

where the last inequality follows from

| X| < kr—1 — (£ +1)/2 implies wx e = 0.
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Using the definition of k., it is easy to show that

kr_1— (£41)/2 > e—t+2
n—{—1 — 2(6+1)

if £ <t+2r -2

Hence, recalling (57), strict inequality in (61) gives an intersecting family 7* C

L%, satisfying (58). If we have equality in (61) for all ¢ € [£ + 2,n] then take
2

i := £+ 2. This gives a T* for which the corresponing family 7, is left—shifted

and (obviously) invariant in [ + 1}, a contradiction to our choice of F. O
Note that if in Lemma 19

w; = 0 unless kr_1 < i,

then the above proof yields that all left—shifted optimal families are invariant
in [t - 27).
Now we are ready to prove Theorem 3a.

Proof of Theorem 3a. The case { = 1 is trivial. Let ¢ > 1. By Example
4 we know M(n,t;w) = Myyare2(n,t;w). As in Lemma 19, choose among all
left—-shifted optimal families F € I;12,42(n, t) one for which £(F) is maximum.
Then the proof of Lemma 19 shows that also this family F is invariant in
[t + 27]. (Note that if we take ¢ := £+ 2 in (61) then the corresponding family
Fy is still in Typopq2(n,t).) Let F/ := {X € F:|X N{t+2r]| =i}. Then the
following facts are easy consequences of the (f + 2r + 2)-t-intersection and the
[t + 2r]-invariance property of F :

1) Fl=0foralli<t+r—1,
2) {t+2r+1,t+2r+2} e X forall X € Fy, |,
3) if Fi, 1 #0then {{t+2r +1,t+2r +2}NX| > 1for all X € Fi ;.

It follows that F =S, or F = Sp41.- O
Let F be t-intersecting. Note that if 2| n + ¢ and F is invariant in [n] or if
24n+t and F is invariant in [n — 1) then F C S Bk Hence the pushing—

pulling method can be used to prove the optimality of the last candidate family.

Proof of Theorem 5. Again, the caset = 1 is trivial. Let ¢ > 1. It suffices to
show the existence of an optimal family which is invariant in [r] resp. [n — 1]
if 2| n 4+t resp. if 2¢n +t. We proceed as in the proof of Lemma 19. Hence
we assume £ <n if 2|n+tand £ <n—1if 2{n -+t Then (57) becomes

£<n-2if2|n+t,{<n-3if2]|n+t. (62)
Now we claim that £}, is self-complementary (in ole+2nl) e X € L3y,
2 2
implies [ +2,n]\ X € £%,.. Indeed, for every set X € L3, X # 0, thereis a
2 2
set Y € £%,, with XNY = 0. Otherwise one could add any set se41,:(Z), with
2
Z e E_t_gi ZN[L+2,n]=X,i€ ZN[f, to the family F without violating the
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t-intersection property, but this contradicts the optimality of F since we have
assumed that w)x; > 0 for all X € F. Using

0 <wixpp gt S Wipgmpxpeage for X € Lo, [X|+(E+1)/2S (n+2-1)/2

we deduce that
-1
Ze £%,|Zﬂ[5+2,n]| < % implies (ZN[HU (£ +2,n)\ 2) € F,

and hence implies (using the [{]-invariance of F)
(Znhu(f£+2,n]\2) € £¥.

This establishes that £3,, is self-complementary.

Now let 7 be the intérsecting family of all sets X € L}, with [X| > 2=£=L
and (in the case 2 |n — £ — 1) all sets X € E’S% with | X| - 2=t=l andn ¢ X.
Then, using the hypothesis on w and the fact that £7,, is self-complementary,
it is easy to deduce that this family 7* satisfies (58):2

DxeT Wix|+ 4 Sl e-t+2
ZXEEE_.F Wi 20 206+1)
This finishes the proof. O
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