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Abstract

We investigate some modifications of the two-dimensional sampling series with a Gaussian
function for wider classes of bandlimited functions including unbounded entire functions on
R? and analytic functions on a bivariate strip. The first modification is given for the two-
dimensional version of the Whittaker-Kotelnikov-Shannon sampling (classical sampling) and
the second is given for two-dimensional sampling involving values of all partial derivatives of
order a < 2 (Hermite sampling). These modifications improve the convergence rate of classical
and Hermite sampling which will be of exponential type. Numerical examples are given to il-
lustrate the advantages of the new method.
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1. Introduction

Denote by LP(R?), 1 < p < oo the Banach space of all complex-valued Lebesgue measurable functions
f with the usual norm || f||,. The entire function f(z) is of exponential type o, o > 0, if there exists
a positive constant A such that

2
|f(2)] < Aexp JZ|%zj| , 2= (21,2) € C%

Jj=1

The Bernstein space, By (R2), 1 < p < o0, is the class of all entire functions of exponential type
o, which belong to L?(R?) when restricted to R?. According to Schwartz’s theorem [18, p.109],

By, (R?) = {f € L? (R?) : supp fc [—o, 0]2} ,
where f is Fourier transform of f in the sense of generalized functions. The two-dimensional

Whittaker-Kotelnikov-Shannon sampling (classical sampling) theorem states that if f € By, (R?),
we can reconstruct via the following sampling expansion, see e.g. [9, 19, 20, 28],

flay=>f <’Zr) [Isinc (ox; — kjm), = eR?, (1.1)
j=1

kez?
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where k := (k1, k2), x = (21, 22) and the sinc function is defined as

sint
sinct = t t#0,
1, t=0.

The series on the right-hand side of (1.1) converges absolutely and uniformly on R?, [28]. The classi-
cal sampling series (1.1) goes back to Parzen (1956), Peterson-Middleton (1962) and Gosselin (1963),
see [9, 19, 20]. They introduced the sampling series (1.1) on the Paley-Wiener space, By o (R2), and
Wang-Fang (1996) extended their result to functions in the Bernstein space, B, , (R2)7 1<p<oo,
[28].

Furthermore, there are many sampling expansions which involve samples of partial derivatives,
e.g. multidimensional versions of Hermite sampling. To our knowledge the first multidimensional se-
ries using values from the function and its partial derivatives was introduced by Montgomery (1965),
[17]. A more general form of two-dimensional sampling involving values of partial and mixed partial
derivatives was given by Horng (1977), [12]. Fang and Li (2006) introduced a multidimensional
version of the Hermite sampling theorem involving only samples from all the first partial derivatives
for functions from By, ,, (R?). They proved that, [8], if f € Bao,, (R?), we have the sampling series
for all z € R?

=5 () 2 (8) (-

keZ?

) } H sinc? (ox; — kjm), (1.2)

where k := (k1,k2), © = (x1,22) and f] = 0f/0x;. The series (1.2) converges absolutely and
uniformly on R?, [8].
In this paper, we introduce a modification for classical and Hermite sampling by using a bivariate
Gaussian function
G(2) =exp(—(2f +23)), 2= (z1,22) € C>

We call the modification of classical and Hermite sampling with Gaussian function classical Gauss
and Hermite-Gauss formulas, respectively. As we see in the sequel of this paper, these formulas have
the following advantages:

e They extend to classes of functions that need not belong to LP(R?). They may even be
unbounded on R?.

e They give a highly better convergence rate. In the following table we summarize the compa-
rison between the convergence rates of the sampling formulas.

’ Formula without Gaussian \ with Gaussian ‘
Classical sampling N-Up e *N/VN
Hermite sampling N-1/p e PN /N

Table 1: The rate of convergence, 8 > « > 0.

The modification of classical sampling series with a bandlimited multiplier can reconstruct the func-
tions exactly, see e.g. [26, formula 5]. Here the Gaussian multiplier is not bandlimited and the
classical Gauss and Hermite-Gauss formulas cannot reconstruct the functions exactly. These mod-
ifications will be used in approximating eigenpairs of two-parameter boundary value problems, [5].
Recently, the one-dimensional classical sampling series with Gaussian function has been used in
approximating eigenvalues of one-parameter boundary value problems, see e.g. [2, 3]. The modi-
fication of one-dimensional classical sampling series with Gaussian function was studied by many



authors in recent years. Qian and his co-authors (2002-2006) studied these formulas in a series
of papers [22, 23, 24] using a Fourier-analytic approach. Also, Schmeisser and Stenger (2007) and
Tanaka, Sugihara and Murota (2008) studied this approach by complex-analytic methods, [26, 27].
Furthermore, the modification of one-dimensional Hermite sampling series is studied in [4].

We organize this paper as follows: Section 2 is devoted to the bounds of the truncation error
of two-dimensional sampling (classical and Hermite). In Section 3, we present a modification of
the two-dimensional version of classical sampling on the class of entire functions and some further
results and we extend the estimates to the class of analytic functions on a strip. In Section 4, we
proceed analogously with the two-dimensional version of Hermite sampling. Numerical examples
with figures are given in Section 5.

2. Bounds for the truncation error

The truncation error of multidimensional classical sampling has been studied under the assumption
that f satisfies a decay condition, cf. [14, 15]. Ye studied the truncation error of multidimensional
classical sampling series based on localized sampling without decay assumption, [29]. For any positive
number N, he truncated the series (1.1) as follows:

T,nfl@):= > f (":) f[lsinc (ox; — kjm), x€R?

keZ3 (x)

where o
72,(z) := {keZ2:—N< T2 —k; <N, j:l,z}. (2.1)

That is, if we want to estimate f, we only sum over values of f on a part of (7/0)Z? near z. In what
follows, we often use the same symbol C for possibly different positive constants. Let B, (Rz),
1 < p < oo, then for any z € R? [29, Theorem 1]

|f(@) = To,w[f1(2)] < ClIf (%)%pr.

As far as we know, there are no studies on the truncation error of multidimensional sampling of
Hermite type. Therefore, we use the technique of [29] to find a bound for the truncation error of
the series in (1.2). We truncate this series (1.2) as follows:

Tonlfl@ = 3 {f(’f)+;f(‘j) (mi—’“f)}ﬁsmczwj_km 22)

keZ3 (x) j=1

In the next lemma we introduce an auxiliary result which will be used in the estimate of the bound

of [f(z) — Ton[f](@)].
Lemma 2.1. Let p,q > 1 such that % + % =1 and let 0 > 0. Then for any (z1,x2) € R?

q\ 1/q

2
Z H sinc (oxj — k;m) < Cpo N7/, (2.3)

keZ2\Z2, (z) |i=1

where Cpe 15 a positive constant depending on p,o only.



Proof. From the definition (2.1) of Z% (x) we obtain

q
o]

2
Z H sinc (ox; — kjm)| < Z |sinc (o1 — kym)|? Z |sinc (ozo — kom)|?

keZ?\Z% () |7=1 |%—k1|>N ko=—00

+ Z |sinc (ozy — kym)|? Z |sinc (ozg — kom)|?.

ki1=—o0 22 _fy|>N
(2.4)
Combining inequality of Splettstofier et al. [25], see also [11, pp. 114-115],
Z |sinc (oz — km)|? < p?
k=—oc0
and the inequality (cf. [30, p. 415])
Z |sinc (o2 — kn)|? < CIN~U/P
|2z —k|>N
with (2.4) implies (2.3). O
Lemma 2.2. Let f € B, ), (R2), 1 < p < oo, then for any x € R? we have
oN2/p
@) = Toxlfl@] < Clfl, () N7 (2:5)

Proof. Since B, (Rz) C Baop (R2), we can apply the expansion (1.2). Together with (2.2) and the
triangle inequality we obtain

2
1@ - Toxll@l = 50 | () [Lsine (o~ kym

kEZ2\Z2, (v)

+ii S n (’Zf) ﬁsinc (0zj — k)|, (2.6)

i=1 kez?\22, (z) j=1

Jj=1

where we used the fact that |sinct| <1 for ¢ € R. Applying Holder’s inequality for all terms on the
right-hand side of (2.6), we obtain

1/p q\ 1/q

@) -Tonl@ < [ 3 \f(kj)] S [ sine (o, — k7

ReZ2\Z3, (x) KEZ2\2% (2) |7=1
1/p q\ /a
1< (kT \|P =
+ o Z Z /i <0> ‘ Z H sinc (ox; — k;m)
=1 \keZ2\Z% (x) keZ2\Z%, (z) |J=1
(2.7)

with %—i—% = 1. Because of f € B, (R?), we have f/ € B, (R?),i=1,2, and (see [18, pp. 123-124])

(Z () >/ <e(2)" 1 23)

kez?




f{(’f)‘p>l/psc(;) "1 <eo (2 11 (2.9

where we used the Bernstein inequality, [18, p.116], in the last step of (2.9). Combining (2.7)—(2.9)
with (2.3), we get (2.5) and the proof is completed. O

(¥

kez?

3. Classical Gauss sampling

We define E2(p), 0 > 0, to be the class of entire functions of two variables satisfying the following
condition

2
FG <o (Ral,[Rl) exp (0 Y[S2] ], 2:=(21,22) € C?, (3.1)
j=1

where ¢ is a non-negative function on R%r and non-decreasing for both of the variables |Rz;|, j = 1,2.

Clearly, the space EZ(yp) is larger than the Bernstein space B, (RQ). Moreover, By, (Rg) =
E2(C) N LP(R?) such that the intersection is understood as f € E2(C) and f|ge € LP(R?) and C
is anon-negative constance. For h € (0,7/0], we define a := (7 — ho)/2. Let E? be the class of all
entire functions on C? and let us define the localization operator Gj, v : E2(p) — E% N LP(R?) as
follows:

oz — kih)®

Gunlf Z f(kh) H sinc (mh™'z; — k;m) exp <_Ni12 , (3.2)
keZ? (z)

where z € C? and

73,(2) = {k: € 7% ||h"Re; +1/2] —k;| <N, j= 1,2}. (3.3)

The operator G, n provides a piecewise analytic approximation for functions from EZ(¢) on each of
the bivariate strips

1
{z eC?: (n] - > h <Rz < <nj + 2) h, j= 1,2} , (n1,n9) € Z2. (3.4)
Denote the expansion (1.1) by £,[f](z) such that £, : B,, (R?) — B,, (R?). In the following

result we show that the operator £, is a limit for the operators G, .

Lemma 3.1. Let ¢ be a constant function and h := w/o. Then we have
]\}im GwNnf=Lsf=Ff, foralfeBs, (RQ) .
— 00

Proof. Since h = w/o, we have @ = 0. Letting & = 0 in (3.2) and taking N — oo implies the
expansion (1.1). O

Let C; be an arbitrary rectifiable piecewise smooth Jordan curve enclosing a simply connected
region of the complex variable wy; which contains the points w; = z; and wi; = k1h in its interior.
Similarly, C5 is an arbitrary rectifiable piecewise smooth Jordan curve enclosing a simply connected
region of the complex variable wy which contains the points ws = 25 and ws = koh in its interior
where (k1, k2) € Z3,(2). Let us consider the kernel function

a\Zj—WwW; 2
exp (_ )

z;) sin(rh~1w;)’

K(z,w) = S(z,w H

le

(1



where w := (wy, ws), z := (21, 22) and
S(z,w) := sin(rh ™ z) sin(wh ™ wsy) + sin(wh ™ 23) sin(rh ™ w;) — sin(rh ™ z;) sin(rh ! 25).

This kernel has a singularity of order one at all the points of the sets {(z1,C), (C, z2) : 21,22 € C}
and {(k1h,C), (C,kah) : ki,ke € Z}. These sets are subsets of C? and understood as the Cartesian
product of the wj-planes for j = 1,2. In the following result we show that the error of approximation
of functions from EZ2(p) by the operator G, n can be written as the integral of the kernel K over
the curves C7 and Cs.

Lemma 3.2. Let f € E%(¢). Then we have for all z € C?

f(2) = GunIf](2) = % 7{) a K(z,w) dwydws. (3.5)

Proof. We consider z1,z3 and ws to be arbitrary fixed complex parameters and we regard to the
kernel K(z,w) as a function of wy. Applying the classical Cauchy integral formula on wi-plane, see
e.g. [1, p. 141], [16, Chapter 3] , we obtain

1
—_— K(z,w) dw; = Res (IC; (21, w2)) + E Res (IC; (k1h, we)) , (3.6)
2 Jo
1 [lh=1Rz1+1/2]—k1|<N

where Res (K; (-, -)) is denoted to the residue of the function K at the point (-,-). Now we consider
the right-hand side of (3.6) as a function of the arbitrary fixed complex parameters wo and z1, zo.
Applying the classical Cauchy integral formula on ws-plane, we get

4;7:2?{0 j{c K(z,w) dwidws = Res (K; (21, 22)) + Z Res (IC; (k1h, k2h)) (3.7)

keZ?, (z)

The residue at each point satisfies

Res (K; (21, 22)) = f(2), (3.8)
and for k € Z%,(2)
>~ Res(K; (kih, kah)) = ~Grn[f)(2). (3.9)
keZ? (z)
Combining (3.7)—(3.9) implies (3.5). O

In the following theorem we estimate the integral in (3.5) to find an error bound for | f(z) — Gn n[f](2)].
Theorem 3.3. Let f € E2(p). Then we have for all |Sz;| < N, j =1,2

e—aN

£ (2) = Gn.n[f1(2)] < 20 (b(21), b(22)) An (2) — (3.10)

where b(z;) == |Rz;| + (N +1),i=1,2,

2
sin(mh™'z;)| On (h7'S2;) + 2 H |sin(mh ™ 2;)| On (R™1S%5)

2
An(z) = Z o9zl
i=1

j=1
and
2e% t2/N 1 g2t e 2at
On(t) := h(2a t 5
V)i coshiza ) Vean (1 Ny 2 | *

= cosh(2a t) + O (Nfl/z) , as N — oo. (3.11)



Proof. Let R; be the rectangle with vertices at £h (N + %) +hNp-1z, +ih(Sz; £ N) where N, =
|Rz; + 3. The concept here is to estimate the integral in (3.5) with C; := R;, j = 1,2. With the
use of the Cauchy integral formula in one dimension the integral in (3.5) may be expanded to obtain
the representation

o« (217w1)2
exp | —— gz ) f(w1, 22)

(w1 — z1) sin(mh~tw)

sin(rh 12

£(2) — Gnlfl(2) = _#1) ]{%

d
2mi i

d’wg

o (Zo—wW 2
sin(rh™12) eXp (‘%) f(z1,w2)
* 27i ]iz (we — 29) sin(mh~lws)

2

2 exp ( 7('2]"\,?201 )2>
— H sin(ﬂ % f w1, W H dwldwg.
m=1 R J Ry ]:1

+

;i — 2zj) sin(mh~tw;)
(3.12)

Since f € E2(), we have from (3.1) for all points (wy,ws) in the bivariate rectangle Ry x R
|f (w1, w)| < @ (b(21),b(22)) H S (3.13)

where b(z;) = |Rz;| + h(N 4+ 1). If z; or 2, is a fixed point, we have
If (21, w2)| < @ (|Rz1|,b(2)) e71S=1leoISwal 4y € Ry, (3.14)

|f (w1, 22)| < @ (b(z1), [Rza|) e71SwrleoS22l 4y € Ry. (3.15)
Combining (3.13)—(3.15) with (3.12) implies

F6) — Gl fl(e)] < 2. Bl = sin(mh 1z | e . ) duny|
AN - 2m R, | (w1 —z1)sin(mh=twy) !
S a (zo—ws)?

o (Res blen)) sz [0 (o1l = 50)
27 R, | (w2 — z2)sin(mh=lws) 2

? (b(e1).blz2)) 1 exp (0,13, - 2 )

+ 12 1:[ |sin(mh ™"z 7{ (w; — 2;) sm(rh—Tw;) |dw; .
(3.16)

The integrals are estimated in [26, p. 203-205], using the residue theorem, as follows:

2
a(zj—wj)

exp (a\%wﬂ - W) o—aN
dw;| < dnby (h7'S2; . 1
7{;{ (w; — z;) sin(mh=tw;) duos| < AmOv (RS2 Ta N (3.17)

5
Substituting (3.17) into (3.16), we obtain (3.10). O

In the following corollaries we introduce some special cases of the last theorem. In the first
corollary we choose the function f to be in B, o (RQ) or B, (R2). The second corollary deals with
the case when f has exponential growth on one or two axes of RZ.



Corollary 3.4. If f € By« (R?), we have

e—aN

\/7rozN.

1£(2) = G N [f1(2)] < 2/ flloo An(2) (3.18)

If f is in the Paley-Wiener space B, 2 (RQ), we have

e—aN

1£(2) = Gn.n[f1(2)] < 20 fll2 An (2) gy

Proof. Since f € B, o (Rz), we have for all z € C2

2
@] < IF e [T e

j=1
If we choose ¢ as || f||so, we get (3.18). For f € B, (R?), we have
1 g ag e . N
f(z) = 7/ f(whoJQ)e‘(‘”ller"LW?)dwldwg,
TJ—oJ-0c
where fis the Fourier transform of f. Using the Cauchy-Schwarz inequality and the Parseval identity

yields
1 o o
< -
7o < 5- //

The proof is completed by (3.18) and the fact that B, o (RQ) C Bo.oo (]RQ). O

~ g ~ g
f(whwz)‘dwldwz <= |fll2= = £l
Vs s

Corollary 3.5. Let f be an entire function satisfying

2
1f(2)] < M J[er®=ltol3=l 2 ec?, M >0, (3.19)

=1
where o, k are non-negative numbers and ¢ + k # 0. Then we have for |Sz;| < N
e—(a—2lm)N

If(z) = Gnn[fl(2)] < 2M5N(2)W7

where h € (0,7/(0 4+ 4k)) and

2
5N(Z) — en(2h+|§R21|+\§Rz2\) Zen|‘323_i\
=1

sin(mh™'2;)| On (R S2;)

2
+2e4nh H en|§RZj| |Sil’1(7Th_1Zj){ 9N (h_lc\\ij) .
Jj=1

Proof. Setting (s, t) = Me"(5+t) for non-negative s and ¢, we obtain the result as an immediate
consequence of Theorem 3.3. O

For d > 0, we introduce the bivariate strip
S;:={zeC?:|9z|<d, j=1,2}. (3.20)

We define A%(¢p) to be the class of analytic functions f : §* — C? which satisfy the condition (3.1)
with ¢ = 0. For functions from the class Afl(cp) we study the operator G 4N in the special case

h:=4 and a = /2.



Theorem 3.6. Let f € A%(p). Then we have for z € 83/4

(2 (22) 2 O 5)
d
N

2

1(2) = Gy M) < ooz, b(2)) (2720

Jj=1

HESHOES

where b(z;) is defined as above (with h = &) and

ﬂN(t)_lit<1—el—2”N m/i\(f+t)>_1it(l+0<Nl/2)>’ as N = co.

Proof. Define the rectangle R; which has vertices at £h (N + %) + hN.,/n +id and +h (N + %) +
hN,/n —ih(d — z;). Since f € A2 (), we have for all points w on the bivariate rectangle Ry x Rz

| f (w1, w2)| < @(b(21),b(22)), (3.22)

d N

and for z; or 29 fixed we obtain

|f(z1,w2)| < @(|R21],b(22)), w2 € Ry,

(3.23)
|f(wy, 22)| < o(b(21), [R22],), w1 € Ry.
Letting C; := R; in (3.5) and using (3.22) to (3.23) implies
ANz exp [ — *NGi—w)*
-l < U ¢ | 0T,
o (Real,bzw) fsin (222)| 1 | exp (~2¥57)
2 R, | (wo — 22) sin (de) |
o (b(z1)b(=2) ¢ | . (7Nz exp (g )
+ gz H sin ( )’7{ . — |dwj|.
=1 ) sm( ~ )
(3.24)

These integrals are estimated in [26, p. 209-211], using the residue theorem, as follows:

72]. (w; — =)sin (dej) |dw;| < 4v2 9y (dj> i : (3.25)

Combining (3.25) and (3.24) yields (3.21). O

Remark 3.7. The error bound in Theorem 3.6 converges to zero as N — oo for every z € Sg /1

Since NI N Nl
sinh <7rd\szj|) < |sin <7rdzj) ‘ < cosh (7T|;ZJ> , (3.26)

the decisive factor in the error bound (3.21) becomes

[V
oo (-3 (- 15)

which guarantees convergence to zero as long as |Sz;| < d/4, j =1, 2.




4. Hermite-Gauss sampling

This section is devoted to a modification of the Hermite sampling (1.2) based on samples of a function
f and its partial and mixed second partial derivatives. For h € (0,27 /0) and 8 := (27 — ho)/2, we
study the operator Hy v : E2(¢) — E? N LP(R?) for every 1 < p < oo given by

Hanlflm) = Y 1+2ZB k) +4Hi)2 7 (k)

keZ? ()

2Bi1(zig1 — kig1h)*\ Ly
+ Y Gy gt (14 202Gl >f< D (k)

72
itj=1 Niy1h

2

2
+ H(ZJ — kjh) JARR (kh) H sinc ? 7Th i — kﬂr) exp (—W) ,

Jj=1

where z € C?, k := (k1,k2) € Z3 and Z3(2) is defined in (3.3). For functions from EZ2(p) the
operator Hj, y provides a piecewise analytic approximation on every bivariate strip defined in (3.4).
Now we consider the kernel function

eXp( B (z; _“’J) )

K(z,w) := (z,w H

]:1 — zj)sin (thle),
where w := (w1, ws), z := (21, 22) and
H(z,w) := sin®(rh ™ 2;) sin?(wh ™ wsy) + sin?(wh 1 25) sin? (mh ™ wy ) — sin® (wh ™1 21) sin?(wh ™' 25).

The kernel K has a singularity of order one at all the points of the set {(z1,C), (C, z2) : 21,22 € C}
and a singularity of order two at all the points of the set {(k1h,C), (C,kh) : k1, ko € Z}.

Lemma 4.1. Let f € E%(¢). Then we have for all z € C?

F(2) = Hn[f](2) = %740 ) K(eow) dusdun (4.1)

where Cy and Cy are the rectifiable piecewise smooth Jordan curves defined above.

Proof. Applying the classical Cauchy integral formula on w-plane and ws-plane respectively, as we
have done in Lemma 3.2, we obtain

2% K(z,w) dwidwy = Res (K; (21,22)) + Y Res (K; (k1h, koh)) . (4.2)
4 Jo, Jey keZZ, (2)

The residues at these points are
Res (K; (21, 22)) = f(2), (4.3)
and for k € Z%,(z)

B (25 —w3)?

0 D(IUQ) e Nh2 we — koh 2
(K- — 1
Res (K; (k1h ko)) wsskah Qs Owy (we — 22) sin(mh~lws) ’

(4.4)

where k = (kq1, k2) and

B(z1—wp)?

D(ws) = lim 0 ) fw)H(w,z)e”  ~rz (Siflu(l ~ kih ))2

wi—k1h E)wl (’U.)l — Zl) ’R'h*lwl

10



It is easy to check that

> Res(K; (kih, kaoh)) = =Hu n[f1(2). (4.5)
keZ?,(2)
Substituting (4.5) and (4.3) into (4.2), we get (4.1). O

The following theorem is devoted to error bounds for |f(z) — Hp n[f](2)]-
Theorem 4.2. Let f € E2(¢). Then we have for all |Sz;| < N, j =1,2
e AN

78BN’

|f(2) = Han[f1(2)] < 20 (b(21), b(22)) By (2) (4.6)

where

2 2
Bn(z) = Ze"lgz“"*i‘ sinQ(ﬂhflzi)| v (h71S82;) +2 H |sin2(7rhflzj)‘ v (h71Sz5),
i=1 j=1
and xn 1s given by
4eB t?/N =281t 0281t
xn(t) = + 3t (1 — o 2r(N-1))2

JTBN (1 _ (t/N)2) (1 — e 2r(NV+0))

= 2cosh(25t)+O(N_1/2), as N — oo.

Proof. Let R; be the rectangles defined in the proof of Theorem 3.3. Using the Cauchy integral
formula in one dimension, the integral in (4.4) may be rewritten (with C; := R;) as follows:

zZ1—w 2
sin?(mh~1z;) exXp (_%) fwy, 22)

Y _ d
e wlf1tZ) 2mi 721 (w1 — z1) sin®(wh~Lw,) o
B (z2—w2)>
L sing(wh_lzz)?{ exp (‘ (Nh2 : )f(Zth) q
w
2mi R, (w3 — z)sin?(mh=lws) 2

2 2 _Bzwy)®
1 Y exp ( N2 )
+ — sin®(mh zm)j{ S wy, we) - dwidws.
Am? ,,1;[1 Ry J Ry i1 (w; — z5) Sln2(7rh*1wj)
(4.7)
Since f € E2(p), we can combine the inequalities (3.13)—(3.15) with (4.7) and obtain
@ (b(z1), | R22|) ea‘%%”sinz(ﬂh*lzlﬂ exp (0|3w1| _ »3(z]1\;112ul)2>
1f(2) = Hn n[f](2)] < : 5 — |dw, |
T R, | (w1 — z1)sin®(wh~twi)
S| w2 (o fy—1 e |Swa| — Blz—wa)®
© (|Rz1],b(22)) 7192 sin? (rh =1 25)| Xp | ¥ W2 NR2 |
27 Ry | (wo — 2z3) sin®(mh=1ws) 2
2 (S, — Blimw)?
b b exp ( 0| Sw;| 3
+ 90( (21)72 (22)) H |sin2(7rhflzj)| < J ]. . Nil ) \dw]|
4m oty rR; | (wj —z;)sin”(mh=tw;)
(4.8)
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The integrals in (4.8) are estimated in [4], using the residue theorem, as follows:

8= wy)?
oxp (o] - 21552
j{ ’ ]_ 5 ol |dw;| < dmxn (hilﬁzj) ¢ . (4.9)
R, | (w; — zj)sin”(rh=1w;) 7B N
Substituting (4.9) into (4.8), we obtain (4.6). O

In the following corollary, we note some special cases of Theorem 4.2. The proofs are similar to
the proofs of Corollary 3.4 and Corollary 3.5 and will be omitted.

Corollary 4.3. If f € B, o (R?), we have

) = w12 < 201 B (2) S (4.10)
If f is in the Paley-Wiener space B, 2 (]RQ), we have
e AN
[£(2) = Ha N [f1(2)] < 20| fll2 B (2) Py Il
Corollary 4.4. Let f be an entire function satisfying (3.19). Then we have for |3z;| < N
o—(B—2hk)N
|f(2) = Hn,n[f](2)] < 2M Fiv(2) TN
where h € (0,27/(c 4+ 4k)) and
2
Fu(z) i= er@htRal+Rz)) 260\323,i| sz(whqzi” Y (hflgzi)
, i=1
+etrh H IRl ’sinZ(Wh_lzj)’ XN (h_lgzj) )
j=1
For functions from the class Afl(go) we study the operator H;_ n in the special case h := % and

B = m. For this particular case we denote the operator by H 4N In the following theorem we

establish a bound for the error ’f(z) - H%7N[f](z)’.
Theorem 4.5. Let f € A%(p). Then we have for z € 83/4

Z\Szj|

. o (TNz; Sz, e_”N(l_ a )

sin L) N A
TV N

2|z, |

. TN z; Sz, eﬂrN(lf T )
sin? L)y | =L ) —e—,
d d N

(4.11)

1) = Hyg M) < 2720 (bz1), b)) Y

=1

<.

+23p(b(21), b(22)) H

j=1

where b(z;) is defined above (with h:= ) and

n(t) :lit<(1—e12wN)2+7r\/N?1+t))1it(1+O(N1/2>>’ as N = oc.

12



Proof. Let R; be the rectangle that is defined in the proof of Theorem 3.6. Since f € A2(y), we use
the inequalities (3.22) and (3.23). Letting C; := R; in (4.1) and using (3.22) to (3.23) implies

TN (21 —wy)?
o (), [Rzal) [sin? (2220) | | exp (—" M)
‘f(z) H%yN[f](ZN = o2 Ry (w1 _ Zl)Sin2 (ﬂ']\fiuq) | U)1|
.2 (mNzo _ aN(za—ws)?
o ([Re], bzo)) [sin? (2z2)| | exp (— =Mzl )
|dw2|
2 Ry | (w2 — z2) sin® (TRL2)
@(b(zl) b(z2)) 2 WNZJ eXp N(lejz w]) )
+THSH ( >’f 51n2(Nw) ‘dwj|'
Jj=1 e

(4.12)

These integrals are estimated in [4], using the residue theorem, as follows:

exp <%]2_%)2) S\ €XP (—7rN (1 _ %))
ﬁj (w; — z;) sin” (%) dus] < 2w ( j) VN . (4.13)

Combining (4.13) and (4.12) yields (4.11). Similarly, as we explained in Remark 3.7, the error bound
converges to zero as N — oo for each z € 83/4. O

5. Numerical examples

In this section we discuss four examples. The first example is devoted to the comparison between
the classical and Hermite sampling and their modifications; G,y and Hp y. In Examples 2-4 we
approximate the function f at the points (zy,x,) == ((u — 1) h, (v — %) k) where u,v € Z and we
summarize the results in some tables. Furthermore, we illustrate the absolute and relative errors by
figures. As predicted by the error estimates, the precision increases when N is fixed but h decreases

without any additional cost except that the function is approximated on a smaller domain.

Example 5.1. Consider the function f(z,y) = sinc W (z) sinc M (y) € By, (R?). In Table 2 we
approximate f using the classical and Hermite sampling and their modifications. The operator 7,

(2, 20) Classical sampling and its modification Hermite sampling and its modification
ST ) = Ton[f(@)] | f(2) = Gnn [ f](@)] | [f(@) = Tonf(2)] | |f(z) = Hnn[f]()]
(71,21) 2.92024x1073 3.94251x1078 2.49081x10~2 8.72566x 10~ 1°
(z1,x3) 6.61393x1073 8.65694x 1078 4.68794x 1072 1.87073x10 14
(z3,21) 6.61393x1073 8.65694x 1078 4.68794x 1072 1.87073x10~
(w3, 73) 1.48818 %1072 1.84838x10~7 8.82321x102 3.87468x 10~

Table 2: Error approximating f at (z,,x,) for N =10, h = 1.

does not always yield a better approximation than T}, n although 7, n involves three times as many
samples, see the last table.

Example 5.2. Consider the function

f(z) =sin(z1 + 22), z = (21, 20) € C%

13



Note that f € Bj o (Rz). Then we apply Corollaries 3.4 and 4.3. In this example, we choose h = 1
and h = 0.2. Here, the bounds in (3.18) and (4.10) can be written as the following uniform bounds

on R?
e~ N

TaN’
—BN

|f (@) = Gnn[f](2)] < 260N5(0) (2465 (0))

:

e
VBN’

In this example, the function ¢ is constant which means that the error bounds are quite realistic,
see Tables 3, 4.

|f (@) = Han[f1(2)] < 2xn5(0) (2+ xn(0))

(0, 70) Absolute error for G, v Absolute error for Hy n

Wl f(x) — G| f](x)] | uniform bound || |f(z) — Hpn[f](x)] | uniform bound
(71,21) 6.22823 1076 1.22002x 10~ 12
(71,23) 6.14371x10~7 1.83603x 10713
(w1, 25) 6.73956x 1076 1.37312x 10712
(w3,21) 6.14371x10~"7 1.83603x 10713
(73, 3) 6.73956x106 5.37297x107° 1.37312x10~12 1.24146x 1011
(73,25) 4.99493x 1076 9.59455x 10713
(75,21) 6.73956x 1076 1.37312x10~13
(w5, 23) 4.99493x10-¢ 9.59455x 10713
(75, 25) 2.58232x1076 5.74873x 10713

Table 3: Approximation of sin at (z,,x,) for N =10, h = 1.

(0, 70) Absolute error for Gy, n Absolute error for Hy n

Wl f(2) — Ghon|f](2)] | uniform bound || |f(z) — Hpn[f](x)] | uniform bound
(71,21) 1.83357x10~8 4.57967x10~15
(71,23) 6.14185x108 1.37668x 10~ 14
(71,25) 9.48047x1078 2.06501x 10714
(w3,21) 6.14185x1078 1.37668x 10~ 14
(z3,73) 9.48047x1078 7.8157x1077 2.06501x 10714 2.07487x10713
(w3, x5) 1.13223%x10~7 2.42029x 1014
(x5,21) 9.48047x108 2.06501x 1014
(75,23) 1.13223x1077 2.42029x 10714
(r5,25) 1.13766x10~" 2.43139x10~ 14

Table 4: Approximation of sin at (x,,z,) for N =10, h = 0.2.

Figures 1, 2 show the graphs of the error of classical Gauss and Hermite-Gauss formulas on the
region [0,5] x [0,5] for N =15 and h = 1.

Example 5.3. In this example, we approximate the function
f(2) = cosh(z1 + 22), 2= (21, 2) € C?,

which satisfies the inequality |f(z)| < el*lel*2l on R2. Here we apply Corollaries 3.5 and 4.4 with
0=0,k=1,M =1and h = 0.5. Note that f has exponential growth on R? and the samples are
exponentially increasing in the two axes x1, x5. Consequently, the absolute errors increase with u, v,

14



h=1,N=15

Figure 1: sin(z) — Gy, n[sin](x). Figure 2: sin(z) — Hp n[sin](z).
(s 70) Relative error for Gy, v Relative error for Hy N

UL @) = Gron[f]()/ £ (2)] bound |[f(x) = Hn v [f1(2)/f(2)] bound
(r1,21) 1.29563x10~7 6.86784x107° 1.29963x 10~ 1.29593x 10~ 11
(1,25) 3.82956x 1078 9.33205x107° 7.38665x1071° 1.76082x 10~
(1, 9) 3.60093x1078 9.39782x107° 7.57675x1071° 1.77246x 10~
(x5, 21) 3.82956x 1078 9.33150x107° 7.38665x1071° 1.76082x 101!
(5, 5) 3.60093x108 9.39377x1075 7.57675x1071° 1.77246x 10711
(x5, 29) 3.59672x1078 9.39896x10~° 7.52052x 10717 1.77268 x 10~ 11
(9, 21) 3.60093x1078 9.39322x107° 7.73459x 10717 1.77246 x 10~
(z9,x5) 3.59672x1078 9.39490x107° 7.69144x1071° 1.77268x 101!
(9, x9) 1.80174x10~8 9.39898x107° 8.14235%x1071° 1.77268 x 1011

Table 5: Approximation of cosh at (z,,x,) for N =10, h = 0.5.

but the relative errors are nearly constant for fixed N. In Table 5, we show the numerical results
with the relative errors and the graphs of the relative errors are given in Figures 3, 4.

Example 5.4. The function

1

_ 2
GroEry et

flz) =

is analytic in the bivariate strip S5. Then we apply Theorems 3.6 and 4.5, where ¢ = 1, d = 2. Note
that f decreases on R? and the sample values are decreasing in the two axes 1, xs. Therefore, the
absolute errors decrease with u,v. First, we approximate f at real points (x,,x,) where u = v =
1,5,9 using the two operators Gj, x and Hj n. The results are shown in Table 6 and the graphs of
the relative error are shown in Figures 7, 8 for NV = 10. In the second test, we compare the quality
of the method at the imaginary points (iy1, iy2) with the absolute errors; see Table 7. As predicted
by the theory, the bound converges when |y;| < 1/2, j =1,2.
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Figure 3: (cosh —Gj, n[cosh]) / cosh.

Figure 4: (cosh —H}, nv[cosh]) / cosh.

Relative error for G4 Relative error for Ha 5
N N

(xua xv)
f(@) = Ga NIf1(2)/f(z) bound f(@) =Ha yIf1(2)/f(2) bound
(z1,21) 3.49444 %107 1.77270x10~° 7.05924x 1016 9.57340x 10714
(21, 5) 1.87428x10~7 2.12636x10~6 2.50581x10~1° 4.95201x10~ 1
(21, 29) 1.89442x10~7 3.04586x 106 2.07430x1071° 5.11876x 10714
( ) 1.87428 %1077 2.12636x 1076 2.50494x1071° 4.97878x 10714
( ) 2.54113x1078 2.55057x1076 2.56392x1071° 3.21078x10714
( ) 2.74261x1078 3.65352x106 1.35655x 10~ 1° 5.05915x 10714
( ) 1.89442x1077 3.04586x 1076 2.07343x1071° 5.11876x 1071
( ) 2.74261x1078 3.65352x 1076 1.34961x 10715 4.71420x 10714
(w9, T9) 1.47165x 1078 5.23342x1076 3.81639x 10716 3.29404x 10714
Table 6: Approximation of f at real points (z,x,), N = 10.
(41, 10) Absolute error for G 4N Absolute error for H 4N
1,92 2 5
/@) = Gnn[/I@)[ [ bound /(@) — Han[/]()] bound

(0.1,0.1) 9.47352x107° 1.27109%x10~° 3.00218x10~13 8.78625x 10713

(0.1,0.2) 1.06283x1076 1.66734x10~° 6.86841x 10711 2.68706x 10710

(0.1,0.3) 2.01921x1075 3.90778x 1074 3.01737x1078 1.51623x10~7

(0.2,0.1) 1.06283x1076 1.66734x10~° 6.86841x10~ 11 2.68706x 10719

(0.2,0.2) 2.04561x106 3.20757x107° 1.38094x 10710 5.36533x 10710

(0.2,0.3) 2.13325x1075 4.06180x 1074 3.04724x1078 1.51891x 1077

(0.3,0.1) 2.01921x1075 3.90778x1074 3.01737x1078 1.51623x10~7

(0.3,0.2) 2.13325x1075 4.06180x 1074 3.04724x1078 1.51891x10~7

(0.3,0.3) 4.11182x1075 7.80285x1074 6.15829x 108 3.03246x 1077

Table 7: Approximation of f at imaginary points (iy1,iy2), N = 10.
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