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Abstract

We construct interpolatory cubature rules on the two-dimensional sphere, using the
fundamental system of points obtained by Lain Ferndndez in [2,3]. The weights of
the cubature rules are calculated explicitly. We also discuss the cases when this
cubature leads to positive weights. Finally, we study the possibility to construct
spherical designs and the degree of exactness.
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1 Introduction

Based on a fundamental system of points on the two-dimensional sphere con-
structed by N. Lain Fernandez, we investigate corresponding interpolatory cu-
bature rules. These point systems satisfy a certain grid structure which can be
exploited successfully. The main point of interest in this paper is the question
whether spherical designs, leading to cubature rules with equal weights, can be
constructed out of these point systems. For (n+1)? points withn =1,3,5,7,9
we can create such spherical designs. For larger n point systems of this type
cannot be spherical designs. However, as a byproduct of our approach for ar-
bitrary odd n, we obtain positive cubature rules. The crucial relation used in
obtaining these cubature results is some simplification of the addition formula
evaluated at these point systems presented in Lemma 2.

Let S? = {x € R®: ||zl = 1} denote the unit sphere of the Euclidean space
R3 and let

W [0,7] x [0,27) — S?,
(p,0)— (sin pcos,sin psin @, cos p)

be its parametrization in spherical coordinates (p,#). The coordinate p of a
point & (¥ (p,0)) € S? is usually called the latitude of . For given functions
f,g:S?* — C, we consider the inner product and norm

(.9 = [, FO9(E) dw(s).

[FARVAVE R

where dw(§) stands for the surface element of the sphere. Let Py, kK =0,1,...,
denote the Legendre polynomials of degree k on [—1, 1], normalized within the
condition Pg(1) = 1 and let V,, be the space of spherical polynomials of degree
less than or equal to n. The dimension of V,, is dimV,, = (n + 1)> = N and
the reproducing kernel of V,, is defined by

" 9k 41
Ko(&n) =) 4:

k=0

P& n) =k, (E-m), &meSh

Then for given n we consider a set of points {& }iz1, N C S? and the polyno-
mial functions ¢ : S* — C, i =1,..., N, defined by

" 2k+1
#1(0) = Knl€ro) = > =0

k=0

Pk(fi'O), Zzl,,N

These polynomials are called scaling functions. A set of points {&; }i=1,
which the scaling functions {¢}},—1 _n constitute a basis for V,, is called a



fundamental system for V,,.
The Gram matrix ®,, associated to the scaling functions {¢!'},—1 _n has the
entries

®,.(r,8) = (@), p5) = Kn(&,6s)

.....

.....

77777

basis of V,,. Furthermore, any f € V,, can be written as

N

£ =3 1L 0

It is easy to verify that the Gram matrix of the Lagrangians, defined by

®,L, =1y

Here Iy denotes the N x N dimensional identity matrix. This means that

77777

{¢lViz1, N-
We wish to find appropriate numerical procedures for approximating the value

of the integral
I(F) = [ F©du(©), Fe ).

This can be achieved by considering cubature formulae of the type

1L (F) = Z:wiF(Q)v (2)

where the L pairwise different points {(; }i=1
nodes and the coefficients {w; }i—1 ..,
problem in numerical integration consists in choosing appropriate nodes and
weights such that the sum (2) approximates I(F) for a large class of functions,
as L — oo.

Let f € V,,and let {L?},— .
system {;};—1,_n. By integrating formula (1) we obtain

77777

/82 f(§) dw(§) = ;f(&) /S L7(€) dw(€).

(2

Therefore, the weights can be defined as

Wl = /S L2(€)dw(€) = (L7,1), i=1,...,N,



yielding the following cubature formula

[ F©do©) = S urFe). (3)

On the other hand, taking f = 1 € V,, in (1), we obtain >, L? = 1 and

therefore
N

N
wi = (L{, 1) = (L}, > Ly) = > (L}, L)
k=1 k=1
This means that the weight w!' can be calculated as the sum of the entries of
the i-th row of the matrix L,,, which is the inverse of the Gram matrix ®,,.

Consequently, we obtain
@, (whwy, .. wy) = (1,1,...,1)7. (4)
Recently, Lain Fernandez proved the following result.

Proposition 1 /2,3 Let n € N be an odd number, o € (0,2) and let 0 <
pr<p2<...<psp < /2, ppyo—j =7 —pj, j=1,...,(n+1)/2, denote
a system of symmetric latitudes. Then the set of points

Su(a) = {&x = W(p;,00) - jk=1,... .n+1},

where
: 2km if 7 1s odd
gi — ] ntD g
k 2(k—1)+a

T i J s even,

constitutes a fundamental system for V,,.

In the following we will study the cubature formula (2), for odd n, with the
nodes in S, ().

2 The matrix ®,,

Due to the symmetry of the fundamental system of points in S,,(«) we expect
equal weights on each latitude. However, for further considerations, we need
to calculate these weights explicitly.

We consider the following numbering of the points of S, («):

m=&,1,M2 = &2, g1 = Eintts
Tin42 = 52,1, Th+3 = 52,2, <oy M2(n+1) = 52,n+1,

Nin+1)n+1 = §n+1,1> Nn+1)n+2 = £n+1,27 s Ning1)2 = §n+1,n+1-



For a given point §;; € S, (), the corresponding numbered point is 1(n1)(j—1)+k-
Reciprocally, given the point ;, [ can be uniquely written asl = k+(n+ 1) (j — 1),
with k,7 € N, 0 < k <n+1, and thus 7 = ;5. With this numbering, the ma-
trix ®,, can be regarded as a block matrix with circulant blocks of dimension
m X m, with m=n+1,

All A12 Alm
&, =
Aml Am2 s Amm

Indeed, the entries of the block A;; are

(Aij)r,S = K, (n(i—l)m—l—ru 77(j—1)m+s) = kn (U(i—1)m+r : 77(j—1)m+s> )

where

NGE—-1)ym4r = gzr = (phgz)
NG—-1)ym+s = 6]8 = (pjaej>

and

Nii—Dm+r * NG—1)ym-+s = sin Pi sin pj COs <01 - Qg) -+ €OS p; COS p;. (5)

Evaluating 6% — 67 we obtain
2(r—s)m

g—gi={ ™
2r=m 4 (—1)HT for i — 5 odd.

m

for © — j even,

Thus, for fixed ¢ and j, the inner product (5) depends only on the difference
r — s, so we can denote it by E;;(r — s). It is immediate that

Eijj(r—s—mk)=E;(r—s) forall k € Z.
With these considerations, the entries of the matrix A;; are
(Aij), o = (kn o Ejj) (r — s),

and therefore the matrix A;; is circulant.

Consider now the Fourier matrix £, € C™*™, with the entries

wf(jfl)(kfl) where w = eXp(ZT(Z/m)

(Fm)jk = \/ﬁ

The matrix ®,, can be written as



®,=(1, 2 F,)" A, ®F,)
=diag (F),..., )| ¢ : diag (Fpn, ..., Fin)
Aml AmZ s Amm
=FyAFy,

with FN = dlag (Fm, . ,Fm) s Aij = F;LA”Fm and Az‘j = dlag ()\1 (Azj> sy >‘m (AZJ))
Here A, (4;;), k = 1,...,m, denote the eigenvalues of the circulant matrix
A;; and they are given by

Ak (Azj) = DAy (wk_1>7

with
Pay (@) =D (Ay), "' =Y K, (U(ifl)mﬂa 77(j*1)m+u> ah
p=1 p=1

Consider the permutation matrix P obtained from Iy by re-ordering its columns
ci, =1,...,N, as follows

P= (Ch Cm+15 Com+1, - - -y C(m—1)m+1, €25 Cm4-2,

5 C(m—1)m+2; - - - Cms C2ms C3ms - - 7cm2) .

The product PAP will be the diagonal block matrix Dy = diag (Dy, Da, ..., Dy,),
with

(Dr), =pa, (W), k=1,2,...,m.

For the cubature formulae we are interested in evaluating the vector
n n n\T _ -1
(wl,wz,,wN> —@n uN,

where uy = (1,1,...,1)T € RY. We have shown that the matrix ®,, can be
written as

$, = FiyAyFy = FyPDyPFy

and thus, using the property P~! = P, we obtain
& ' = F,PD'PFy.

Then, with the notation e; = (1,0,...,0) € R™ we compute



T
Fyuy = (vVm,0,...,0]...[vm,0,...,0) = m(eiley...[e))",

PFNuN:\/5(1,1,...,1|0,0,...,0|...|0,0,...,0)T:\/ﬁ(u§|0|...

m m m

T
D'PFyuy = /m diag (D', D;',..., D) (u},]0]... | 0)
T
=vm ((D7'uy)"|0]...]0)
Denoting Dy 'u,, = s = (s1, 5o, . . . ,sm)T, we further obtain

PD'PFyuy = vm (51,0,...,0]52,0,...,0|...]5,,0,...,0)7,

m m m

and finally

-1 * -1 T
(I)n uy = FNPDN PFNUN = (81,81,...,81|82782,...732|...|Sm,8m,...,8m) .

—_———
m m m
In conclusion, the weights (w},wy, ..., wh) take at most m distinct values,
. . T _

contained in the vector s = (s1,52,...,8y) = Di Un.

3 The matrix D;'

We focus now on the matrix D; having the entries

( NGE—1)ym+1, N - 1)m+k:)

Mz T MS

"2+ 1
:k:1§ A Pl (77(1 m+1° 77(] 1)m+k)
1 n
=0 (214 1) Z P, (n(i_l)mﬂ : 77(j—1)m+k) |
k=1

l

i
o

At this point we prove the following result.

Lemma 2 Let {&},_, ,, be n+1 equidistant points on a circle of S?, situated

-----

at the latitude p*. Then for every point £ (¥ (0, p)) € S? we have

ST R(E-€) = (n+1) B(cosp) Pi(cosp’) forl=0,1,....n

0)".



Proof. The spherical coordinates of the point &, are (6, p*), with
Op = (B+2km)/(n+1), B €0,2r), k =0,1,...,n. Using the associated
Legendre functions P}, defined by

A /2 Dy i
P,ﬁ(t):(ﬁi#ii) (1—752)” d—ij(t),jzo,...,k, tel-1,1],

we can write

l
Pi(§- &)=Y P (cos p) P (cos p7) e 5%,

s=—1
n l .
Z P (&-&)= z Pl|5\ (cos p) PZISI (cosp*) e isf—is L Z (e_isn%l)k‘
=0 s=-1 k=0

Since —n < =1 < s <[ < n, it follows that the only non-zero term of the sum
S2L__, is the one corresponding to s = 0. In this case, the sum 37_, equals
n + 1 and thus

szf &) = (n+1) B (cosp) P, (cosp*) forl=0,1,...,n

[ |
As an immediate consequence we prove the following result.

Lemma 3 Let {Sk, ék, k=0,1,... ,n} be n+1 equidistant points situated on
circles which are symmetric with respect to the equator, at the latitudes p* and

*

m — p*, respectively. Then

n

> (Popsr (€ 6) + Popia(§-6)) =0 forp=0,1,...,(n+1)/2— 1.

k=0

Proof. Since P,; is an odd polynomial, we obtain
Papy1 (cos p*) + Popyr (—cosp®) = 0.

Then, multiplying it by P, (cos p), the conclusion follows immediately. m
Let us come back to the matrix D;. Its entries are

(D1),

(cos pi) Py (cos ;)



With the notations n+1=m, ¢g=(n+1)/2and cosp; =1r;, i =1,...,q, it
can be written as D; = G - G, with

By (7"1) \/gpl (7‘1) \/EPQ (rl) mpn (Tl)
Py (7’2) \/§P1 (TQ) \/BPQ (r2) . mpn (72)

| Po(ry) V3Pi(ry) V5P(ry) -+ V20 +1P,(ry)
Am Py (=rq) V3P, (—rq) V5P, (=rq) -+ V20 + 1P, (1)

B, (—7"2) \/§P1 (_TQ) \/3P2 <—7’2) .. \/mpn (—Tg)
By (—7“1> \/§P1 (—Tl) \/5P2 (-rl) - \/mpn (_Tl)

Consider the matrix P;, obtained from the identity matrix I,, by the trans-
formations row (n + 1) < row (n + 1)— row 1, row n < row n— row 2, ...,
row (¢ + 1) < row (¢ + 1)— row ¢. Then the matrix G; = P;G has the form

Po(’l“l) \/gpl(’l“l) \/EPQ(T:[)"' \/27’L+1Pn(7”1)

m | Polrg) V3Pi(ry) VBPy(ry) -+ V20 +1P,(r,)

G, =/ —
ATl 0 —2vBP(r) 0 o =220+ 1P, (r,)
0 —2V3P () 0 c =220+ 1P, (1)

By multiplying it by a permutation matrix P, we can write

where ¢, = /%L,

LVBPy(r1) ... V20 —1F1(r)
N ] ©

1V5Py(ry) ... V20— 1P, (1)

10



V3P (1)) VTPs(ry) ... V2n+1P,(r,)
Y — : : :

q )

V3P (r1) VTPs(r1) ... 20+ LPy(r1)

and P3 € R?%? is a permutation matrix which changes the rows (1, "TH),

) (1),

We wish to evaluate D; 'u,,, so we write

1

D,=GG" =P;'G, (P{'G,) = P/'G,GT (PY)
~P'G,P} (G,P})" (P{") =P'G.GE ()
and finally
Dt =PT (G;l)T G;'P,.
Then Pyu,, = (1,]0,)", and

-1

gy L (%P,
o\ 0, —2Y,
(g <P3Yq>Yq1) 1 (X ;Xq1P3>
@\ 0, -3Y! o\ 0, —3Y*
Moreover, we obtain
1 1 Xgluq
GQ_ Plumzi )
Cp Oq
1 X 1) X1y
(G2_1>TG2_1P1Um=* ( I ) o

6721 1 (X_ng)T u,

and



Denoting
-1
a=(ay,ay,... ,aq)T = (XquT) u,,

-1
. T
the vector P (XquT> u, is equal to (ag,...,a2,a1)" and thus
2m
-1
Dy u,, = P (a1,az,...,0q,Qq,Gq-1,...,02,01) .

In conclusion, the cubature weights w] take at most ¢ distinct values and in
order to evaluate them it is enough to evaluate the components of the vector

a= (XquT) - u,.

4 The weights of the cubature formula

The matrix X, given in (6) can be written as X = X, =V - U, with

2 .4 n—1
Triry...r
2 .4 n—1
V = 1ryry ..org .
= 1. N E (7)
2 .4 n—1
Lrgrg ...ry

boo \/SbOQ \/§b04 V20 — ]-bO,n—l

U= \/gbm \/§b14 o V2n — 1bl,n—1

vV 2n — 1bq71,n71

the entries of the matrix U being the coefficients of the Legendre polynomials

l
Pgl(ZL‘) = Z bkgll‘Qk.
k=0

Since the vector a is the solution of the system
X X'a = u,, (8)
using the Cramer’s rule, the component a; can be written as

a = det (Yz)
" det (X XT)’

where Y; is the matrix obtained by replacing in Y = X X7 the column i by
the vector u,. One can prove that the matrix Y; can be written as XX7,

12



where X7 is the matrix obtained from X by replacing the column i by the
column vector el = (1,0,...,0). Consequently,

det (X) - det (XT)  det (XT)  det (27)
~ det (X) - det (XT) ~ det (XT) ~ det (z7)

a;

where
1 PQ(’T’l) Pn—l(rl)

1 Py(rg) ... Py (ra)

].PQ(T'q) ---Pn—l(rq)

and the matrix Z! is obtained from the matrix Z7 by replacing the column
i by the vector (1,0,---,0)T. Thus, the vector a becomes the solution of the
system

77 . a=e,

which implies a = (Z7)~'e;. The matrix Z” can be written as Z7 = L - VT,
where V is defined in (7) and

1 0 0 0

boa  bio 0 0

L= boa b1a bay 0
bO,n—l bl,n—l b2,n—l T bq—l,n—l

So, a = (VT>71 L~'e;, the vector g = L~!e; being the first column of the
matrix L1,

In order to calculate the first column of L~! we use the orthogonality property
of Legendre polynomials. Since Py; is an even polynomial, orthogonal to F, on
the interval [—1, 1] for [ # 0, we can write

y
b2
im0 2k +1

1 1 !
0= / Py (z)dx = / Z bhyx%dx =
0 0 k=0

Hence, the row [, | # 1 of the matrix L is orthogonal to the vector v =

T
(1, %, %, cee %%1) and thus the first column of L= will be v.
We have now to evaluate the vector a = V~!v. Using again the Cramer’s rule,
we can calculate a; by replacing the vector v into the ith column of V7, as

follows:

13



1 1 1 1 1 1
) rtoory i % 7’12+1 7"2
i = det (V) rtoors Tty % r;*H 7"3
rp g i zq%l T?J;ll 7"3_1
= (=)™ (Vi - Wirlvip oy (—=1)e ! Ly
03t 52 29—1 1)
where Vi, k=0,1,...,q—1, denote the lacunary Vandermonde determinants,

obtained from the matrix V' by eliminating the row k£ 4 1 together with the
column 7. Regarding the lacunary Vandermonde determinants, the following
result is known.

Lemma 4 Let x1,29,...,2, € C and V =V (21,24,...,2,) € C their Van-
dermonde determinant. Let V}, denote the following lacunary determinant:

1 1 1
X1 XTo - xp
— — k=1 k-1 - —
Vk—Vk(xl,...,xp)— xq T xlgl ,k—o,l,...p.
gkl ghtl x’;“
o) b b

Then Vi, =V - Sp_i, where S, k= 0,1,...,p, denote the Viete sums of the
numbers xi, ..., xp.

Using Lemma 4, the numbers a; can be expressed as

2 2 2 2
0" — (_1>i+1V (Tl, NN IR TR ,Tq)
V(r%,...,rg)
1 1 . (_1)q—2 ‘ (_1)q—1
x| S — =S =S -5+ ——
(q et T g T Ty Ty o )
where S}, k= 1,...,¢, are the Viete sums of the numbers 77, ..., 17,77, 1, ..., 77,
Replacing the values ﬁ, l=0,1,...,q—1, with fol 2?dx, we further obtain

14



T B 0 [ e MY i)
X (qu_Q — Sig?rt L Qig2ab 4 (—1)‘1_2:1:25';_1 + (—1)5’_15;) dx
( 2 2 .2
2

where [;(x) are the fundamental Lagrange polynomials associated to the points

2 2
(ST

Further, the vector 1 = (I;(22),ly(22),...,1,(z%)" can be regarded as the
solution of the system

V7Tl = (l,xz,x4,...,x2(q_1))T, (9)

with V given in (7). By integrating from 0 to 1 the equations of the system (9)

we obtain that the weights {a;,i = 1,...,q} and the cosines of the latitudes,
{rj,j =1,...,q}, should satisfy the following conditions

a1+a2—|—...+aq:1,

arri + asry + ...+ agra=1/3,

arri + agry + ...+ agry =1/5, (10)

arri Y oard 4 4 aqrg(q’l) =1/(2¢ —1).
Thus, for the quadrature formula

[ 1@ds ~ 3t (), (1)

the equations of the system (10) are equivalent to the requirements that the

quadrature formula (11) is exact for the monomials 1,22, 2%, ..., 2?72,
On the other hand, if we denote vy = —rg,v2 = —7¢_1,..., 03 = —T1,V41 =
T1,Vgt2 = T2,...,Uz = Tg, then the numbers v; can be regarded as the nodes

of the quadrature formula

IRCCE ! (12

with a,40; = a; for i = 1,...,¢q, and the system (10) is equivalent to the
requirement that the quadrature formula (12) is exact for the monomials
1,2,22,... 22971,

15



5 Cubature formulae with positive weights

We are particularly interested in the positivity of the weights w]* =
1,...,q. Consider the interpolating cubature formula

n+1n+1
[ F©du© = Y 3wl F(Ew) 13)

i=1 k=1

with & € Sn(a), for which we have proved the equalities wj, = wj* for
i,k € {1,...,n} and the fact that the weights w?, i = 1,...,n + 1 take ¢
distinct values denoted ffl a;, © =1,...,q. Let us denote r; = cosp; for i =
1,...,q, v1 = —Tg, 02 = —Tg1,...,Ug = —T1,Vq41 = T1,Vg42 = T2, ...,V =
rq. The following theorem describes three possible cases in which the weights
are positive.

Theorem 5 With the above notations, the cubature formula (13) is positive
in the following cases.

1. The numbers v; are the roots of the Legendre polynomial P, 1 and

2 fori=1
a; = , fori=1,...,q.
(1= 2) (P (v0))? !
2. The numbers r; are taken as r; = t; , where t; are the roots of the
Legendre polynomial P,, and
1 .
a; = 5, fori=1,...,q.

(1—2) (Py(ts))

3. More general, the numbers r; are taken as r; =
of the polynomial Q, = P, + pP,—1, with p € (—1,1) and

ti+1

1
a; = 5, fori=1,...,q.

(1—13) (Pyts)

Proof. 1. Choosing the latitudes {p;, i = 1,...,n+ 1} such that cos p; = v,
the matrix D; becomes diagonal with positive entries and therefore the vector

Dy ', has positive components.
2. With the notation g(t) = 1 f(!) we have

/0 dx—2/ (t+1> :/tg(t)dt%iz;aig(tl)

*Zazf (t +1> :qu:laif(ri).

16



Thus, the quadrature formula (11) has positive weights given by

a; 1
ai:—:

2 -2 ()

and it is exact for f € Py,_1, since the quadrature formula

[ ottt ~ Y agle

-1

is exact for g € Py,_1.

3. It is known (see [4], Th. 3.3.4, [5]) that the polynomial @), has distinct zeros,
all situated in (—1,1) if and only if p € (—1,1). In this case, the quadrature
formula (11) has positive weights and is exact for f € Py,_5. ®

6 Spherical designs

A spherical design is a set of points of S* which generates a cubature formula
with equal weights, exact for spherical polynomials up to a certain degree. We
try to find conditions on the latitudes p;, which assure that the set S, («) is
a spherical design. So we suppose

— no__ _ n o __
Wy =wy = ...=WxN = Wy,

1
implying a; = a2 = ... = a, = 1/q. We make again the notations cosp; =
ri, 12 =1, fori=1,...q In the trivial case n = 1, we obtain a spherical
design if and only if w; = 7 and p; = 7/6.

Next we focus on the case n > 3. In this case the numbers ~; should satisfy
the following conditions:

M+v+.. +v=¢/3,
NAY A+ 7 =4q/5

W+ =g/,

equivalent to the requirement that the quadrature formula (cf. (12))

q

IRCLE ;Z (Fr) + F(=rs)) 1)

i=1

is exact for the monomials 1, z, ..., 229" !. Let us mention here that, unlike the
classical Chebyshev quadrature, we impose in (15) for our purpose only ¢ — 1
conditions for ¢ unknowns.

17



The purpose now is to show how to solve the system (14), containing ¢ — 1
equations and g unknowns. A way to do it is described in the following.
We introduce the notations W, = ¢,

and the parameter 3 = W,. The solutions of the system (14) are the roots of
the polynomial

Ty(x) =294 Siz9 "t + Sox 2 + ...+ S,

where (—1)%Sy denotes the Viete sums of order k associated to the numbers
M- -+, They are related to the sums Wj, through the following relations:

Wi+ 51 =0,
Wy + S1W7 4+ 25, =0,
W3 + S1Wy 4 SoWq + 353 = 0,
.. (16)
Wy + S Wer +SoWy g+ ...+ S Wy = 0.

Thus, in order to solve the system (14), we first calculate recursively the
numbers S, Sy, ..., S, using the relations (16) and then determine the roots
of the polynomial 7,. This polynomial depends on the parameter 3, which
appears only in the free term S,.

For our purposes we need to find those values of 8 for which the polynomial
T, has all the roots located in (0, 1). The following theorem discusses all the
cases for which the set S, (a) defined in Theorem 1 constitutes a spherical
design.

Theorem 6 Letn € N, n > 3, be an odd number, ¢ = (n+1)/2 and consider
the set S, (), defined in Proposition 1, with arbitrary o € (0,2) and with the
latitudes {p;, i =1,...,q} taken such that cos p; = \/7;, where y; are the roots
of the polynomial

Ty(x) = 29+ 129t 4+ Soz 2 + ...+ S,

The polynomial T, has all the roots located in (0,1) — and hence Sy, («) consti-
tutes a spherical design — in the following four cases.
1. Forn = 3, the polynomial Ty(z) = 2* — % + 3 (% - ﬁ) has all the roots

located in (0,1) if and only if B € (%, %).

2. For n =5, the polynomial T3(z) = 2% — 2% + £+ % (% — ﬁ) has all the
roots located in (0,1) if and only if 5 € (0.4,0.433996 .. .).
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3. Forn =1, the polynomial Ty(z) = z* — % + 23”552 — 242 (gggg - ﬁ)
has all the roots located in (0, 1) if and only if
B € (0.4336145...,0.4403997 .. .).

4. Forn =9, the polynomial T5(x) = x5_5i+73_1(;g:;2+1177;1+é (?{’82 ﬁ)
has all the roots located in (0, 1) if and only if
B € (0.4507152...,0.4515677...).

For n > 11, the polynomial T, cannot have all the roots located in (0,1).

Proof. The results in the first four cases are immediate consequences of the
application of Rolle’s sequence. In order to prove that for n > 11 the system
(14) has no real solution in (0, 1), we use the results proved by Bernstein [1].
Here the author treated the quadrature formula

n+1

/Olf( dvaiZf (0 <a; < 1), (17)

By making the linear transform =z = (y 4+ 1)/2, it is immediate that (17) is
equivalent to the quadrature formula

n+1

[iwars 53 1w (L) (18)

If we denote v; = y?, i = 1,...,q, then the system (14) is equivalent to the
requirement that (17) or (18) are exact for the monomials 1,x, ..., ™.

In [1] the degree of exactness of (17) was denoted by M,,1. For our purposes
we have to prove that, for n odd, n > 11, we have M, ,; < n, implying the

incompatibility of the system (14). The main result of [1] is the inequality

Myi1 < my/2(n+1). (19)

Since my/2(n+ 1) < n for n > 21, the system (14) will be incompatible for
n > 21. Also, the following inequalities were proved

M12 < 12, M14 < 13, M16 < 15, M18 < 15, M20 < 20.

Singe our goal is to prove that M, ,; < n, it remains to prove that M, < 11
and Myy < 19. In these cases, the associated polynomials T} are

Ty(z) =25 — 22° +

Tt 442 922 2x 1<92956 B )
6

5 105 T 175 825 6 \202125

and
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102° 411:8_1880567 2378z% 1955620

T — 10
0(z) =2 5 T 567 1701 56133
923089182%  5448407° 93661922 384505294

45972927 137918781 * 7033857831  25258583471121
1 (396816635954996 )

- 10 \833533254546993

respectively. An application of the Rolle’s sequence shows that these polyno-
mials cannot have all the roots located in (0,1). =

7 The degree of exactness of the positive cubature formula

The cubature formula on the sphere (3) with the nodes in &;;, € S, (o) reduces
to

[RCLEGED s SEICHY (20)

It is exact for f, € V,, since it is an interpolatory one. The question which
arises is whether it can be exact for all f € V1. The answer is given in the
following theorem.

Theorem 7 Consider the interpolatory cubature formula (20), associated to
the system of points S,(«) given in Proposition 1, which is exact for f € V,
and suppose that the weights w; are positive. Then the cubature formula is
exact for f € Vi1 if and only if a =1 and

n+1

Z ijn+1(COS ,0]) = O, (21)

Jj=1

where P, .1 denotes the Legendre polynomial of degree n + 1.

Proof. Let f € V,,,;. Then f can be written as

f:fn+gn7

where g, is an element of the wavelet space Harm,, = V.1 © V,. It is well
known that a basis in Harm,, is given by the set

{Pgﬂ(cosp)cosjﬁ, j:0,1,...,n+1}U{Pg+1(cosp)sinj9, jzl,...,n+1},

where PZ 41 are the associated Legendre functions. Therefore the polynomial
gn can be written as

n+1

gn = Y_ P!, (cosp) (b cos jO + c;sin j6)
=0

20



with b;,¢; € R. We suppose the cubature formula (20) to be exact for f,
meaning that

= ; w;' f(m:). (22)

/82 F(&) dw(€) = /S Fal€) dw ()

formula (22) reduces to

Since

/fn §) dw(§ Zw (fu(n:) + gn(n:)) -

But f, € V,, implies

[ € dut€) = X ul ),

so we have
N
> wiga(n) =0
i=1

Further, using the fact that the weights corresponding to the points situated
at the same latitude p; are equal, we obtain

n+1n+1 n+1 ] )

S>> w; > P (cos pj) (bl cos 0], + ¢;sin l%) =0

j=1 k=1

=0

for all b, ¢; € R, which is equivalent to

n+1 n+1

Zw]ZPnH(cosp])cosl@k—O forl=0,1,...,n+1,

Jj=1 23
n+1 n+1 ( )
> w;j Z P!, (cosp;)sinl@) =0, for I =1,...,n+1.

7=1

For [ = 0 it means that

n+1

Z w;Fyy1(cos pj) =0, (24)

=1

and thus conditions (21) are satisfied. For [ = 1,2,...,n 4+ 1 we have

n+1 n+1 ;
> w; Z ! 1 (cos pj)ett = 0. (25)
7j=1
Replacing now
. B+ 2km 0, if 5 is odd,
0], = L—— . with 3; =

(v — 2)m, if j is even,
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we get, for [ =1,2,...n+1,

n+1 ntl piyokx
S w;iPl(cosp;) D e = 0.
=1 k=1

The sum Y741 will be zero for all I, except [ = n+1, when it equals (n+1)e?.
So we have

n+1 ]
S wy(sin py) "1 =0,
j=1
implying
n+1
sinar > w;(sinp;)" ! =0,
j=1, j even
n+1 n+1
> wy(sing)" +cosar Y. w;(sinp)" ! = 0.
j=1, j odd Jj=1, j even

One can obtain positive weights only in the case a = 1, implying further that

n+1 n+1
> wj(sin pi)" T = > wj(sin pi)"
j=1, j odd j=1, j even

This condition is satisfied for our cubature formula, since we have proved in
Section 3 that the weights corresponding to the points situated on symmetric
latitudes are equal.

Conversely, if a = 1 and > w;P,41(cos p;) = 0, then relations (24) and
(25) are satisfied, implying further that the cubature formula is exact for all
feVi. m
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