Neighborhood structures and products of undirected graphs

Martin Sonntaga and Hanns-Martin Teichertb

aFaculty of Mathematics and Computer Science, Technische Universität Bergakademie Freiberg
D–09596 Freiberg, Prüferstr. 1, Germany

bInstitute of Mathematics, University of Lübeck
D–23562 Lübeck, Ratzeburger Allee 160, Germany

Abstract

Let $G = (V, E)$ be a simple undirected graph. The \textit{neighborhood hypergraph} $\mathcal{N}(G) = (V, \mathcal{E}^N)$ of G has the edge set $\mathcal{E}^N = \{ e \subseteq V \mid |e| \geq 1 \land \exists x \in V : e = N_G(x) \}$. In a certain sense, this is a generalization of the well-known notion of the \textit{neighborhood graph} $N(G) = (V, E_N)$. For several products $G_1 \circ G_2$ of simple undirected graphs G_1 and G_2, we investigate the question how $N(G_1 \circ G_2) / N(G_1 \circ G_2)$ can be constructed from G_1, G_2, $N(G_1)$, $N(G_2)$, $N(G_1)$, $N(G_2)$ and vice versa.

Keywords: neighborhood graph, neighborhood hypergraph, graph products

Mathematics Subject Classification (2010): 05C76, 05C65, 05C75