Abstract. In this paper, localization properties of trigonometric polynomial Hermite operators are discussed. In particular, time frequency uncertainty and operator norms are compared for the different types of fundamental interpolants which serve as scaling functions for a trigonometric multiresolution analysis.

§1. Introduction

Recently, several different approaches to periodic multiresolution analyses have been presented. For example, periodic scaling functions and wavelets are discussed by Narcowich and Ward [3] who investigate their time frequency behaviour in terms of an uncertainty principle for periodic functions due to Breitenberger [1]. The periodic basis functions in [3] possess an uncertainty product of $O(\sqrt{n})$ for increasing dimension n of the corresponding spaces. On the other hand, uniformly bounded uncertainty products are computed by Selig [6] for trigonometric fundamental Lagrange interpolants based on de la Vallée Poussin means. A multiresolution analysis generated by two different types of scaling functions and wavelets, namely fundamental trigonometric Hermite interpolants, is investigated in [5]. One of these scaling functions is a Fejér kernel, while the other is a conjugate Dirichlet kernel. In this paper, we explain the different behaviour of these two types of functions with respect to their localization properties. This includes the computation of the time frequency uncertainty as well as the operator norms. Let us remark here that similar differences also occur for the de la Vallée Poussin and Fourier type Lagrange interpolants which are described in [4].
Let $L^p_{2\pi}$ denote the space of real-valued p-integrable 2π-periodic functions for $1 \leq p < \infty$, and $C_{2\pi}$ the space of real-valued continuous functions, with their respective norms $\|f\|_p = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^p \, dx^{1/p}$ and $\|f\|_C = \max_x |f(x)|$. In particular, the $L^2_{2\pi}$-norm is induced by the inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)\overline{g(x)} \, dx$$

for $f, g \in L^2_{2\pi}$.

The following functions are well-known and have been studied in detail, e.g., in [8]. For any $n \in \mathbb{N}$, consider two different kinds of kernels

$$\phi_{n,0}^0(x) := \frac{1}{2n} + \sum_{k=1}^{2n-1} \frac{2n - k}{2n^2} \cos kx = \begin{cases} \frac{1}{2n^2} \frac{\sin^2(nx)}{\sin^2(\frac{x}{2})} & \text{for } x \notin 2\pi \mathbb{Z}, \\ 1 & \text{for } x \in 2\pi \mathbb{Z}, \end{cases}$$

and

$$\phi_{n,0}^1(x) := \frac{1}{2n^2} \left(\sum_{k=1}^{2n-1} \sin kx + \frac{1}{2} \sin 2nx \right) = \phi_{n,0}^0(x) \sin x.$$

For $k = 0, \ldots, 2n - 1$, define equally spaced translates by $\phi_{n,k}^0(x) := \phi_{n,0}^0(x - k\pi/n)$ and, analogously, $\phi_{n,k}^1(x) := \phi_{n,0}^1(x - k\pi/n)$.

These functions are fundamental Hermite interpolants, i.e., for each $k, s = 0, \ldots, 2n - 1$, it holds that

$$\phi_{n,k}^0\left(\frac{s\pi}{n}\right) = \delta_{k,s} \quad \text{and} \quad \phi_{n,k}^0\left(\frac{s\pi}{n}\right) = 0$$

and

$$\phi_{n,k}^1\left(\frac{s\pi}{n}\right) = 0 \quad \text{and} \quad \phi_{n,k}^1\left(\frac{s\pi}{n}\right) = \delta_{k,s}.$$

In particular, $\phi_{n,k}^0$ and $\phi_{n,k}^1$ were used as scaling functions in the Hermite multiresolution analysis studied in [5].

For $n \in \mathbb{N}$, the spaces V^r_n are defined for $r = 0, 1$ as

$$V^r_n := \text{span}\{\phi_{n,k}^r : k = 0, \ldots, 2n - 1\}.$$

It is well known (see [5,8]) that

$$V_n = V^0_n + V^1_n = \text{span}\{\cos r x, \sin (r + 1)x : r = 0, \ldots, 2n - 1\}.$$

Thus $V_n \subset V_{n+1}$ and the spaces V_n form a polynomial multiresolution analysis of $L^2_{2\pi}$.

As shown in [5], the corresponding wavelet spaces can be described as

$$W_n = W^0_n + W^1_n,$$
 Localization of Hermite Operators

where for $r = 0, 1$

$$W_n^r := \text{span}\{\psi_{n,k}^r : k = 0, \ldots, 2n - 1\},$$

$$\psi_{n,0}^0(x) = \frac{1}{2n} \cos n x + \frac{1}{6n^2} \sum_{\ell=2n+1}^{4n-1} (6n - \ell) \cos \ell x$$

and

$$\psi_{n,0}^1(x) = \frac{1}{6n^2} \sum_{\ell=2n+1}^{4n-1} \sin \ell x + \frac{1}{8n^2} \sin 4n x.$$

As for the scaling functions, let $\psi_{n,k}^0(x) := \psi_{n,0}^0(x - k\pi/n)$ and $\psi_{n,k}^1(x) := \psi_{n,0}^1(x - k\pi/n)$ for $k = 0, \ldots, 2n - 1$.

These wavelets show the same interpolatory properties as the scaling functions, namely for each $k, s = 0, \ldots, 2n - 1$:

$$\psi_{n,k}^0\left(\frac{s\pi}{n}\right) = \delta_{k,s} \quad \text{and} \quad \psi_{n,k}^0\left(\frac{s\pi}{n}\right)' = 0$$

and

$$\psi_{n,k}^1\left(\frac{s\pi}{n}\right) = 0 \quad \text{and} \quad \psi_{n,k}^1\left(\frac{s\pi}{n}\right)' = \delta_{k,s}.$$

The following computations are restricted to the scaling functions, but similar investigations yield that both types of wavelet functions behave like $\phi_{n,k}^1$. Let us only briefly mention at this point that by giving up the interpolatory properties, one can find another splitting of the space W_n into two wavelet spaces such that one of the two wavelets possesses the same localization properties as $\phi_{n,k}^0$.

§2. Localization by interpolation

For any $n \in \mathbb{N}$, a Hermite type interpolation operator can be defined, mapping any real-valued differentiable 2π-periodic function f into the space V_n, namely $L_n := L_n^0 + L_n^1$, where for $r = 0, 1$,

$$L_n^r f(x) = \sum_{k=0}^{2n-1} f^{(r)}\left(\frac{k\pi}{n}\right)\phi_{n,k}^r(x).$$

Hence, each L_n^r is a projection onto V_n^r due to the interpolatory properties.

Note that the decomposition $V_n = V_n^0 + V_n^1$ is direct, but not orthogonal, as can be seen from the following result.
Lemma 2.1. For \(n \in \mathbb{N} \), it holds that
\[
V_n^0 = \text{span}\{(n + s) \cos(n - s)x + (n - s) \cos(n + s)x : \ s = 0, \ldots, n, \\
(n + s) \sin(n - s)x - (n - s) \sin(n + s)x : \ s = 1, \ldots, n - 1\}
\]
and
\[
V_n^1 = \text{span}\{\cos(n - s)x - \cos(n + s)x : \ s = 1, \ldots, n - 1, \\
\sin(n - s)x + \sin(n + s)x : \ s = 0, \ldots, n\}.
\]

Proof: To show the first statement, it is sufficient to establish that \(V_n^0 \) is in the kernel of \(L_n^1 \). Consider
\[
L_n^1((n + s) \cos(n - s) \cdot + (n - s) \cos(n + s) \cdot)
= \sum_{k=0}^{2n-1} (s^2 - n^2) \left(\sin(n-s) \frac{k\pi}{n} + \sin(n+s) \frac{k\pi}{n} \right) \phi_n^1(k)
= \sum_{k=0}^{2n-1} (2s^2 - 2n^2) \sin k\pi \cos \frac{s k\pi}{n} \phi_n^1(k) = 0.
\]
The rest follows analogously. \(\blacksquare \)

A further possibility to describe localization of polynomials is related to a Nikolskii type inequality which can be stated as
\[
1 \leq \frac{\|p_n\|_p}{\|p_n\|_q} \leq Cn^{\frac{1}{2} - \frac{1}{p}}
\]
for all trigonometric polynomials of degree at most \(n \) and \(1 \leq q \leq p \leq \infty \) (see [7, Ch.4.9.2]). To obtain equality on the right-hand side can also be regarded as a measure of time localization.

Lemma 2.2. For \(n \in \mathbb{N} \), the norms of the fundamental interpolants \(\phi_{r,n,k} \), \(r = 0, 1 \), \(k = 0, \ldots, 2n - 1 \), \(1 < p \leq \infty \), are as follows:
\[
\|\phi_{r,n,k}\|_p \sim n^{-\frac{1}{p}}.
\]
Moreover,
\[
\|\phi_{0,n,k}\|_1 = \frac{1}{2n}, \quad \|\phi_{0,n,k}\|_2 = \frac{1}{2n} \sqrt{\frac{8n^2 + 1}{6n}}, \quad \|\phi_{0,n,k}\|_c = 1,
\]
whereas
\[
\|\phi_{1,n,k}\|_1 \sim \frac{\log n}{n^2} \quad \text{and} \quad \|\phi_{1,n,k}\|_2 = \frac{1}{4n^2} \sqrt{4n - \frac{3}{2}}.
\]
Proof: The asymptotic behaviour of these kernels is well-known (see e.g., [8, Ch.10]).

For later use, the complex Fourier coefficients of $\phi_{n,0}^0$ can be given as $c_s^0 = (2n - |s|)/(4n^2)$ for $|s| \leq 2n - 1$ and $c_s^0 = 0$ for $|s| \geq 2n$. The ones for $\phi_{n,0}^1$ are $c_s^1 = \text{sgn } s i/(4n^2)$ for $0 < |s| < 2n$, $c_s^1 = \text{sgn } s i/(8n^2)$ for $|s| = 2n$ and $c_s^1 = 0$, otherwise. Hence,

$$\|\phi_{n,k}^0\|_2^2 = \sum_{s=-\infty}^{\infty} |c_s^0|^2 = \frac{1}{4n^2} + \frac{1}{8n^4} \sum_{s=1}^{2n-1} s^2 = \frac{1}{3n} + \frac{1}{24n^3}$$

and

$$\|\phi_{n,k}^1\|_2^2 = \frac{1}{32n^2} + \sum_{s=1}^{2n-1} \frac{1}{8n^4} = \frac{1}{4n^3} - \frac{3}{32n^4}.$$

For the computation of the L^1-norm and C-norm, the positivity of $\phi_{n,k}^0$ can be applied. ■

§3. Time frequency uncertainty

According to Breitenberger [1] and Narcowich & Ward [3], it is possible to formulate an uncertainty principle for functions in $L^2_{2\pi}$. For a function $f \in L^2_{2\pi}$, represented by its Fourier series $f(x) = \sum_{s=-\infty}^{\infty} c_s e^{isx}$, the first trigonometric moment is defined as

$$\tau(f) := \frac{1}{2\pi} \int_{0}^{2\pi} e^{isx} |f(x)|^2 \, dx = \sum_{s=-\infty}^{\infty} c_s c_{s+1}.$$

Then, the angle variance for $f \in L^2_{2\pi}$, $f \neq 0$, is defined by

$$\text{var}_A(f) := \left(\frac{\|f\|_2^4 - |\tau(f)|^2}{|\tau(f)|^2} \right) = \left(\frac{\sum_{s=-\infty}^{\infty} |c_s|^2}{\sum_{s=-\infty}^{\infty} c_s c_{s+1}} \right)^2 - 1,$$

and the frequency variance for real-valued functions by

$$\text{var}_F(f) := \sum_{s=-\infty}^{\infty} s^2 |c_s|^2.$$

The Uncertainty Principle for real-valued functions $f \in L^2_{2\pi}$, $f \neq 0$, (see [1,3]) states that

$$\frac{\sqrt{\text{var}_A(f) \text{var}_F(f)}}{\|f\|_2} \geq \frac{1}{2}.$$

We now proceed to compute the uncertainty products of the two trigonometric Hermite interpolants $\phi_{n,k}^0$ and $\phi_{n,k}^1$.
Theorem 3.1. For $n \in \mathbb{N}$, the angle variances of $\phi_{n,k}^0$ and $\phi_{n,k}^1$ are
\[
\text{var}_A(\phi_{n,k}^0) = \frac{3}{4} \frac{16n^2 - 1}{(4n^2 - 1)^2} \quad \text{and} \quad \text{var}_A(\phi_{n,k}^1) = \frac{1}{4} \frac{48n - 27}{(4n - 3)^2},
\]
while
\[
\text{var}_F(\phi_{n,k}^0) = \frac{16n^4 - 1}{120n^3} \quad \text{and} \quad \text{var}_F(\phi_{n,k}^1) = \frac{8n^2 - 3n + 1}{24n^3}.
\]
Consequently, the uncertainty products are
\[
\sqrt{\frac{\text{var}_A(\phi_{n,k}^0) \text{var}_F(\phi_{n,k}^0)}{\|\phi_{n,k}^0\|_2}} = \sqrt{\frac{3}{10} \left(1 + \frac{20n^2 + 1}{2(8n^2 + 1)(4n^2 - 1)}\right)}
\]
and
\[
\sqrt{\frac{\text{var}_A(\phi_{n,k}^1) \text{var}_F(\phi_{n,k}^1)}{\|\phi_{n,k}^1\|_2}} = \sqrt{n \left(1 + \frac{120n^2 - 101n + 18}{(8n - 3)(4n - 3)^2}\right)}.
\]

Proof: As the variances are translation invariant, it suffices to deal with the case $k = 0$.

One computes
\[
\sum_{s=-\infty}^{\infty} c_s^0 c_{s+1}^0 = 2 \sum_{s=0}^{2n-2} c_s^0 c_{s+1}^0 = \frac{1}{8n^4} \sum_{s=0}^{2n-2} (2n-s)(2n-s-1)
\]
\[
= \frac{1}{8n^4} \left(\sum_{s=1}^{2n} s(s-1)\right) = \frac{4n^2 - 1}{12n^3},
\]
and similarly all the other necessary terms.

Discussion: According to the above theorem, $\phi_{n,k}^1$ displays an $O(\sqrt{n})$ product, while in the limit, one obtains for $\phi_{n,k}^0$ a value of $\sqrt{0.3} = 0.5477...$, relatively close to the optimal value of $1/2$. This is due to the fact that the function $\phi_{n,0}^0$ can be interpreted as an approximation of the theta functions
\[
\sum_{s=-\infty}^{\infty} e^{-c s^2 + i s x},
\]
for which the time frequency localization tends to the optimal value of $1/2$ if the positive parameter c tends to 0. Details will be discussed in a forthcoming paper.
§4. Approximation Properties

Our goal in this section is to describe time-frequency localization in terms of operator norms. Let X be one of the spaces $L^p_{2\pi}$ or $C_{2\pi}$. We consider the orthoprojections P_n from X onto V_n^*.

Theorem 4.1. Let $n \in \mathbb{N}$. For the operator norms of the orthoprojections, it holds that

$$
\|P_n^0\|_{X \to X} < 3
$$

and

$$
\|P_n^1\|_{X \to X} \sim \begin{cases}
\log n, & \text{if } X = C_{2\pi} \text{ or } X = L^1_{2\pi}, \\
C_p, & \text{if } X = L^p_{2\pi}, 1 < p < \infty.
\end{cases}
$$

Proof: Let $f \in C_{2\pi}$ be given such that $P_n^0 f = \sum_{k=0}^{2n-1} \gamma_k \phi_{n,k}^0 \neq 0$. By the positivity of $\phi_{n,k}^0$, we obtain

$$
\|P_n^0 f\|_C = \| \sum_{k=0}^{2n-1} \gamma_k \phi_{n,k}^0 \|_C \leq \left(\max_{0 \leq k < 2n} |\gamma_k| \right) \| \sum_{k=0}^{2n-1} \phi_{n,k}^0 \|_C
$$

$$
= \max_{0 \leq k < 2n} |\gamma_k| =: |\gamma_1|.
$$

On the other hand, by Hölder’s inequality,

$$
\|f\|_C \| \phi_{n,i}^0 \|_1 \geq |\langle f, \phi_{n,i}^0 \rangle| = |\langle P_n^0 f, \phi_{n,i}^0 \rangle| = | \sum_{k=0}^{2n-1} \gamma_k \langle \phi_{n,k}^0, \phi_{n,i}^0 \rangle |
$$

$$
\geq |\gamma_i| \left(2 \| \phi_{n,i}^0 \|_2^2 - \sum_{k=0}^{2n-1} \frac{|\gamma_k|}{|\gamma_i|} \langle \phi_{n,k}^0, \phi_{n,i}^0 \rangle \right)
$$

$$
\geq |\gamma_i| \left(2 \| \phi_{n,i}^0 \|_2^2 - \| \phi_{n,i}^0 \|_1 \right).
$$

Using the norm equalities from Lemma 2.2, we summarize

$$
\|P_n^0\|_{C_{2\pi} \to C_{2\pi}} \leq \frac{|\gamma_i|}{\|f\|_C} \leq \left(\frac{2 \| \phi_{n,i}^0 \|_2^2}{\| \phi_{n,i}^0 \|_1} - 1 \right)^{-1} = \frac{6n^2}{2n^2 + 1} < 3.
$$

The uniform boundedness of $\|P_n^0\|_{C_{2\pi} \to C_{2\pi}}$ implies the one for $X = L^p_{2\pi}$, $1 < p < \infty$, (see [2, Ch.1, §4, Th.9]).

To estimate $\|P_n^1\|_{X \to X}$, we use the similarity of P_n^1 to the Fourier sum projection.

Namely, from Lemma 2.1, we conclude that V_n^1 has the orthogonal basis $\{ \sin kx \cdot \cos kx : k = 0, \ldots, n; \sin kx \cdot \sin kx : k = 1, \ldots, n-1 \}$.
Hence, in terms of the classical Fourier sum operator S_n with respect to \[\text{span}\{ \cos kx : k = 0, \ldots, n; \ \sin kx : k = 1, \ldots, n - 1 \}, \] we write
\[P_n^1 f(x) \sim S_n(f \sin n\cdot)(x) \sin nx, \]
which leads to an asymptotic behavior as stated in the theorem.

Acknowledgments. The second author was supported in part by the Department of the Air Force, Wright-Patterson AFB, OH, contract F33600-94-M-2603.

References

Jürgen Prestin
FB Mathematik
Universität Rostock
Universitätsplatz 1
D-18051 Rostock
Germany
prestin@mathematik.uni-rostock.d400.de

Ewald Quak
Center for Approximation Theory
Department of Mathematics
Texas A&M University
College Station, TX 77843-3368
USA
quak@euler.math.tamu.edu