BEST APPROXIMATION IN LIPSCHITZ SPACES*

J. PRESTIN

With the help of de la Vallée Poussin sums we describe best approximation in Lipschitz spaces. This yields equivalence theorems as well as estimates for special approximation processes.

Let X be one of the spaces C or L^p $(1 \leq p < \infty)$ of 2π-periodic complex-valued functions. If $f \in C$, we will write $\|f\|_C$ instead of $\|f\|_C$. For $0 \leq \beta \leq 1$ and $r = 0, 1, 2, ...$, we denote by $X^{r, \beta}$ the class of functions f with the following property: There exists a 2π-periodic $(r-1)$-times absolutely continuous function g with $g^{(r)} \in X$ (in the case $r = 0$), $f = g$ in X and

$$
\|g^{(r)}\|_{p, \beta} = \sup_{h \neq 0} |h|^{-\beta} \|g^{(r)}(\cdot + h) - g^{(r)}(\cdot)\|_p < \infty.
$$

The norm in $X^{r, \beta}$ is given by

$$
\|f\|_{p, r, \beta} = \sum_{k=0}^{r} \|g^{(k)}\|_p + \|g^{(r)}\|_{p, \beta}.
$$

Further we define the subspaces $X^{r, \beta}$, $0 \leq \beta < 1$, in the following way:

* The final version of this paper will be submitted for publication elsewhere.
\[\mathcal{X}^{r,\beta} = \{ f \in X^{r,\beta} : \lim_{h \to 0} |h|^{-\beta} \| g(r)(\cdot+h) - g(r)(\cdot) \|_p = 0 \} \]

with norm \[\| f \|_{p, r, \beta} \].

Let \(T_n \) be the set of trigonometric polynomials of order \(\leq n \).

The best approximation of \(f \in X^{r,\beta} \) is denoted by

\[E_n(f, X^{r,\beta}) = \inf_{p_n \in T_n} \| f - p_n \|_{p, r, \beta}. \]

\[a_{n,\ell} f = \frac{1}{2\ell+1} \sum_{k=-\ell}^{\ell} S_k f \quad (0 \leq \ell \leq n). \]

This yields the following Jackson-type theorem and further applications.

Theorem 1. Let \(r+\beta \leq m+\alpha \) and \(0 \leq r \leq m \). For all \(n=0,1,2,\ldots \) and \(f \in X^{m,\alpha} \) there exists a constant \(C > 0 \) such that

\[E_n(f, X^{r,\beta}) \leq C(n+1)^{r+\beta-m-\alpha} \| g(m) \|_{p,\alpha}. \]

Further we have for \(f \in X^{m,\alpha} \), \(0 \leq \alpha < 1 \),

\[E_n(f, X^{r,\beta}) = o(n^{r+\beta-m-\alpha}), \quad n \to \infty. \]

Corollary 2. For \(r+\beta \leq m+\alpha \), \(0 \leq r \leq m \) and \(f \in X^{m,\alpha} \) it holds

\[E_n(f, X^{r,\beta}) \leq C(n+1)^{r+\beta-m-\alpha} E_n(f, X^{m,\alpha}). \]

A simple application of the above results gives a Kandaliya-type estimate for special approximation processes.

Corollary 3. Let \(r+\beta \leq m+\alpha \), \(0 \leq r \leq m \) and \(f \in X^{m,\alpha} \). If \(t_n \in T_n \) is such that

\[\| f - t_n \|_{p, r, \beta} \leq C(n) E_n(f, X), \]

then

\[\| f - t_n \|_{p, r, \beta} \leq cC(n)(n+1)^{r+\beta-m-\alpha} \| g(m) \|_{p,\alpha} \]

with a constant \(c > 0 \).

The Lipschitz spaces are, in general, not separable. That is why it is interesting to know for which \(f \in X^{r,\beta} \) the condition

(1) \[E_n(f, X^{r,\beta}) = o(1), \quad n \to \infty, \]

is fulfilled.

Theorem 4. Let \(f \in X^{r,\beta} \) and \(0 \leq \beta < 1 \). Then (1) is equivalent to \(f \in \mathcal{X}^{r,\beta} \).

In the following we need a Bernstein-type inequality for trigonometric polynomials.

Theorem 5. If \(r+\beta \leq \ell+m+\alpha \), then for any \(p_n \in T_n \)

\[\| p_n(\cdot) \|_{p, m, \alpha} \leq \| p_n(\cdot) \|_{p, r, \beta} \cdot \begin{cases} 1, & \text{if} \; n = 0, \\ \max(4, 1 + \frac{m}{r+\beta}), & \text{if} \; n = 1, \\ 4n^{\ell+m+\alpha-r-\beta}, & \text{if} \; n > 1. \end{cases} \]
Now we can formulate the main equivalence theorem. (For arbitrary Banach spaces an analogous result is due to P. L. Butzer and K. Scherer [2].) We apply the usual k-th modulus of continuity \(\omega_k(f, x, h) \) (see e.g. [1]).

Theorem 6. Let \(0 \leq r + \beta < r' + \beta' < m + \alpha < m + \gamma, \: 0 \leq \alpha, \beta, \beta', \gamma \leq 1, \: f \in X^{r', \beta}, \) and

\[
E_n(f, x^{r', \beta}) = \| f - p_n^r p_{r', \beta} \|.
\]

Then the following assertions are equivalent:

1. \(f \in X^{m, \alpha}, \: \| f \| \lesssim n^{-\alpha} \) for all \(n \),
2. \(f \in X^{m-1,0}, \: \omega_2(g(m-1), X, h) = o(h), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),
3. \(f \in X^{m,0}, \: \omega_2(g(m), X, h) = o(h), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),
4. \(\omega_k(f, x, h) = o(h), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),
5. \(\omega_k(g(r), X, h) = o(h^{m+\alpha}), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),
6. \(\omega_k(g(r'), X, h) = o(h^{m+\alpha}), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \).

Assume that one of the additional conditions is fulfilled:

a) There exist constants \(A \) and \(B \) with \(0 < A < B < 1 \), \(A n^{-\alpha} \lesssim B n \) for all \(n \).

b) \(1 < p < \infty \) and there exists a constant \(0 < B < 1 \) with \(\ell \lesssim B n \) for all \(n \).

c) \(m + \alpha - r - \beta < 1 \) and there exists a constant \(0 < A < 1 \) with \(\ell \geq A n \) for all \(n \).

Then the following assertions are equivalent to 1)-10):

11. \(\| f - p_{n, \alpha} f \|_{p^r, r', \beta} \lesssim n^{\alpha} \) for all \(n \).
12. \(\| (g - p_{n, \alpha} f)(r) \|_{p^r, r', \beta} \lesssim n^{\alpha} \) for all \(n \).

If a) or b) is fulfilled, then the following assertions are equivalent to 1)-12):

13. \(\| q_{n, \alpha} f \|_{p^s, s', \gamma} \lesssim n^{s+\gamma-m-\alpha} \) for all \(n \).
14. \(\| (q_{n, \alpha} f)(s) \|_{p^s, s', \gamma} \lesssim n^{s+\gamma-m-\alpha} \) for all \(n \).

Theorem 6 is also true in a "small-\(o \)" version.

Theorem 7. Under the assumptions of Theorem 6 the following assertions are equivalent:

1' \(f \in X^{m, \alpha}, \: \| f \| \lesssim n^{-\alpha} \) for all \(n \),
2' \(f \in X^{m-1,0}, \: \omega_2(g(m-1), X, h) = o(h), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),
3' \(f \in X^{m,0}, \: \omega_2(g(m), X, h) = o(h), \: h \to 0^+, \: \| f \| \lesssim n^{\alpha} \) for all \(n \),

J' \(J = 2, \ldots, 14 \).

Here we get J') from J), if we replace "large-\(o \)" by "small-\(o \)".

To prove the equivalence theorems, we use the following estimates.
Lemma 7. For $0 \leq \xi \leq n$ we have

$$
\| \sigma_n f \|_{X, \xi, \beta} \leq \| \sigma_n f \|_{X, X} \cdot
$$

$$
\| f - \sigma_n f \|_{p, r, \beta} \leq (1 + \| \sigma_n f \|_{X, X}) \, E_n(f, X^r, \beta)
$$

and

$$
\| f - \sigma_n f \|_{p, r, \beta} \leq 36 \sum_{j=0}^{n+\xi} \frac{E_{j+\xi}(f, X^r, \beta)}{\xi+j+1}.
$$

The last estimate is a consequence of a result due to W. Dahmen [3].

References

Jürgen Prestin
Wilhelm-Pieck-Universität
Sektion Mathematik
DDR 2500 Rostock
Universitätsplatz 1
GERMAN DEMOCRATIC REPUBLIC