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Abstract— Local deviations of the main field and signal decay
due to transverse relaxation lead to perturbations of the Fourier
encoding commonly applied in magnetic resonance imaging.
Hence, images acquired with trajectories having long readout
times suffer from artefacts such as blurring, geometric distortion,
and intensity inhomogeneity. These effects can be corrected by
means of iterative reconstruction algorithms, provided a field
map and a relaxation map are available. Recently, a fast gridding-
based approach to field inhomogeneity correction was proposed.
In this work, this algorithm is extended to also handle the signal
decay due to relaxation. It is then embedded in a novel fixed-
point iteration algorithm that allows for the joint estimation of
the field map, relaxation map, and echo images from a single
multi-echo acquisition. This joint estimation approach enables the
application of fast acquisition trajectories in multi-echo imaging
experiments, such as spiral and echo planar, while avoiding
artefacts in the reconstruction of the echo images, the field
map, and the relaxation map. Since the method dispenses with
the acquisition of a separate calibration scan, an appreciable
overall reduction in scan time can be achieved. The evaluation
of the proposed algorithm in simulations and in-vivo experiments
shows a significant improvement in the reconstruction of the echo
images and the estimation of the relaxation map, as compared to
the standard case, where no correction is applied. The demon-
strated rapid convergence of the fixed-point iteration algorithm
together with the computational efficiency of the gridding-based
reconstruction keeps the overall computation time reasonable.

Index Terms— Magnetic resonance imaging, image reconstruc-
tion, gridding, field inhomogeneity, off-resonance correction,
relaxation, signal decay correction, iterative reconstruction, spiral
imaging, echo planar imaging

I. INTRODUCTION

Measurement of relaxation rates in magnetic resonance
imaging (MRI) is usually performed by means of multi-echo
sequences [1], which allow for the acquisition of a series
of images at increased echo times. The relaxation rate is
then estimated by fitting voxel-wise an exponential function
to the data of the echo time series. Such measurements are
characterized by long repetition times (TR) and are, there-
fore, associated with relatively long scan times. One way to
shorten the acquisition time consists of applying fast imaging
techniques that reduce the number of phase encoding steps
while preserving the spatial resolution. For example, echo
planar imaging [2] and spiral imaging [3] have been applied
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to collect data in multi-echo imaging experiments for 73
mapping. These trajectories acquire a larger portion of k-
space at a given echo time, and have, therefore, long readout
times. In that case however, additive dephasing due to off-
resonance and relaxation-induced signal decay significantly
perturb the Fourier encoding. Hence, images reconstructed by
means of a Fourier transform, or by gridding in case of non-
Cartesian trajectories, suffer from artefacts such as blurring,
geometric distortion, and intensity inhomogeneity, depending
on the chosen trajectory. Main field inhomogeneity may be
due to susceptibility gradients occuring e.g. at the transition
between air and tissue, as can be found in the vicinity of the
sinus cavities in brain imaging or of the lung in liver imaging.
Signal-decay artefacts are most pronounced in regions having
short T35 values, such as some parts of the brain or the
liver, and can be severe in the presence of iron-oxide contrast
agents. This work proposes a new, time-efficient method to
correct for off-resonance and signal decay artefacts in the
reconstruction of multi-echo acquisitions and the estimation
of the corresponding relaxation map.

Field inhomogeneity and signal decay generally affect ac-
quisition techniques with long readout times, not only in multi-
echo acquisitions, and several approaches have been proposed
to reduce their effects. While technical solutions, such as
shimming, may limit main field inhomogeneity due to system
imperfections to some extent, nonlinear spatial variations of
the main field due to susceptibility changes can only be
mitigated in very rare situations and only for a spatially limited
field of view [4]. Alternatively, suitable corrections during the
reconstruction process can be applied. In these techniques,
the off-resonance term is explicitly taken into account in the
modeling of the encoding matrix, and the obtained linear
system is inverted [S]. This approach can be extended to
include also the signal decay due to transverse relaxation [6],
[7]. These correction schemes require, however, the knowledge
of both a field map and a relaxation map, which usually need
to be measured in a calibration scan. A field map can be
measured by acquiring two images at different echo times and
dividing their phase difference by the difference in echo times.
The echo spacing should be kept small to avoid wrapping
errors.

Two practical issues may limit the applicability of an
improved correction scheme based on pre-measured maps:
the substantial scan time involved in acquiring additional data
and the possible temporal variation of the field map and the
relaxation map, e.g. due to physiological effects [8], between
the calibration and the diagnostic scans. In the particular case
of multi-echo imaging, however, data from different echo



times are inherently acquired. Therefore, it becomes possible
and attractive to jointly estimate all required quantities, i.e.
the magnetization image, field map, and relaxation map, with
the goal to obtain artefact-free images and maps in one step.
With such a joint estimation approach, the two aforementioned
problems can be circumvented.

The joint estimation of the magnetization image, field map,
and relaxation map has been proposed as general recon-
struction approach in [9] for fMRI, and demonstrated on
simulation experiments with a rosette trajectory. The recon-
struction problem to be solved is nonlinear and has a high
dimensionality, therefore requiring appropriate, fast algorithms
to be developed. In [10], an iterative reconstruction procedure
was described for the joint estimation of magnetization image
and field map on the basis of a spiral-in / spiral-out dual-
echo data acquisition. As in [9], the quadratic differences
between the data and the model are iteratively minimized,
and a tailored minimization scheme is presented, where the
magnetization image and field map are iteratively updated. It is
shown that each image update can be efficiently performed by
means of a fast off-resonance correction algorithm described
in [11], while the field map update proceeds by gradient
descent. The resulting algorithm converges relatively rapidly
provided a good initial estimate of the field map can be
given. In this work, we propose to extend this approach by
including the relaxation rate into the correction scheme, and
develop an efficient iterative algorithm for the solution of
the joint estimation problem, based on a fixed-point iteration
which dispenses with gradient descent techniques. The com-
putational efficiency of the reconstruction is further improved
by using a new correction algorithm, which generalizes the
gridding-based algorithm, originally introduced in [12] for
off-resonance correction only, in order to also correct for
relaxation-induced signal decay.

We start with a mathematical description of the joint esti-
mation of the magnetization image, field map, and relaxation
map in a multi-echo imaging experiment. Then, the proposed
algorithm for off-resonance and signal decay correction with
given field map and relaxation map is introduced. After briefly
describing a method for simultaneous field map and relaxation
map estimation in image space, we present the details of the
fixed-point iteration algorithm. The joint estimation method is
finally evaluated in simulations and in-vivo experiments.

II. THEORY

In MRI, the relation between the demodulated signal s (t)
at a time point ¢ and the transverse magnetization m.(r) at
an echo time 7 can be modeled by

me(r)e ROT dp (1)
Rd
where k(t) denotes the k-space trajectory and r denotes the
spatial position. The phase and amplitude of the magnetization
at echo time 7 are mainly governed by the local angular off-
resonance frequency w(r), which is proportional to the local
main field inhomogeneity, and the local transverse relaxation
rate R(r) according to

m_r(,,,) _ m(r)e—iw(r)re—R(r)T , )

s.(t) =

where m denotes the initial transverse magnetization. For
short readout times, the model of (1) is accurate enough and,
therefore, widely used in standard MR reconstruction methods.
However, for longer readout times, the effects of main field
inhomogeneity and relaxation cannot be neglected anymore
during acquisition of the signal s, (¢). Taking both effects into
account, the model of (1) can be extended to

mT(,’,)efiw(T‘)tefR(T‘)tefik:(t)-7‘ dr. (3)
R4

s-(t) =

Both off-resonance and relaxation terms can be modeled by a
single complex correction term

z(r) := R(r) + iw(r). 4)

In the following, we derive a discrete model by applying the
rectangular rule to the integral in (3) on N equispaced voxel
positions r, € [—&L &) x ... x [ Z2 Zd) By sampling
the signal s, (t) and the k-space trajectory k(t) € [—m,7)¢ at
M time points ¢;, we obtain

N—-1

Srj R Z mT)pe_th”e_ikj""”, 5)
p=0
with s; ; 1= s, (t;), M+, :=m; (7)), 25 := 2(r,), and k; :=
k(t;). Denoting moreover m, := m (r,), we can define the
vectors

s; = (8r)j=0,..M—1,
m, = (Mrp)p=0,.N-1,
m = (mp)pzo,...,N—l,
z = (Zp)p:O,.A.,N—la

and the matrices
H, =
P, =

—tiz, —ik;-T
(™% e™™ ™) g M-t gm0, N1
diag ((e_m”)pzo,_“,]\/—ﬂ )
and write (5) and (2) in matrix-vector form

s; ~H.m,, (6)

m; =P, .m. (7

In the following, m, will be referred to as echo image, m as
image, w as field map, and R as relaxation map.

ITII. RECONSTRUCTION WITH KNOWN FIELD MAP AND
RELAXATION MAP
A. lIterative reconstruction
First we address the problem of reconstructing an image of

the magnetization given the signal s, and the correction term
z. We consider the weighted least-squares problem

s — H.m, |3 = min 8)

with W := diag ((w])JM:El) The matrix W can be used to

compensate for irregular sampling in k-space. The solution of
problem (8) can be computed by solving the weighted normal
equation of first kind

HWH . m,=H]Ws.. )



Because of the size of this linear system, we solve it itera-
tively with the Conjugate Gradient Normal Equation Residual
(CGNR) method [13], which is a special variant of the
conjugate gradient method [14] applied to the normal equa-
tion of first kind. The computational complexity of solving
(9) depends on the number of iterations needed to achieve
convergence and on the computational effort per iteration. The
number of iterations depends mainly on the choice of the start
vector and on the condition of the system matrix H Z'WH z-
For simplicity, we take the zero vector as start vector. The
weights W may cause a loss of signal-to-noise ratio (SNR)
in theory [11], but improve the condition of the system matrix
H I:WH = In the simple case, where the correction term z is
zero, the CGNR method has been shown to converge rapidly
when using suitable density weights, usually after one iteration
[15]. When z is imaginary and, therefore, contains only the
field map, the system matrix remains very well conditioned,
yielding rapid convergence [12]. For general complex z, the
exponential decay due to the relaxation term impairs the
condition of the matrix H ';'WH 2. Since this leads to noise
amplification, regularization may be applied to (9).

The computational effort of one CGNR iteration depends
mainly on the matrix-vector multiplications with H , and its
adjoint. When z = 0, the complexity of one multiplication
can be reduced from O(MN) to O(NlogN + M) by ap-
plying nonuniform fast Fourier transforms (NFFT) [16]. It is
shown hereafter how the NFFT can be applied to reduce the
complexity in the general case where z # 0.

B. Fast matrix-vector multiplication

In the expression (5), the exponential term e %% prohibits
the direct use of NFFT methods. To derive a fast algorithm
for the multiplication of a vector with the matrix H ,, several
methods have been proposed [5], [11], [12]. All these methods
can be translated into a common framework described in [17]
that makes use of an approximation of the form

K—-1

—ti2p ~u .

€ ~ E :amncmp
k=0

with suitable coefficients a; . and ¢ ,. Inserting (10) into (5)
leads to

(10)

Y

K-1
ikj-r
,'NE:aJHE:mTpCHpe o

Thus, a fast matrix-vector multlphcatlon with the matrix H ,
can be realized as follows:

1) Compute m’TW’H = c,imep fork=0,...,K —1.

}:mfm

0,...,K —1by means of K NFFTs.

§ :aJKSTJn

The total number of operatlons is determined by the second
step, yielding a computational complexity of O(K (N log N +
M)) operations.

—ikj-rp

2) Evaluate s for K =

3) Compute s, ; =

For the matrix-vector multiplication with the adjoint H :, a
similar approximation can be derived

K—-1 M-—1

ikj;-r
§ :Cn,p § , S7,j4j,k€ 7.
k=0 §=0

This expression can be evaluated by means of adjoint NFFTs,
leading to the same complexity as the evaluation of (11). Dif-
ferent methods to find suitable coefficients a; ,, and ¢, , were
described. When only the field map is taken into account, these
methods set either a;, or ¢, , equal to a shifted exponential
and compute the remaining coefficients using an interpolation,
either by means of standard window functions [5], [17], or
by minimizing a min-max criterion based on the field map
values [11]. While the use of standard window functions lacks
accuracy, the min-max method needs to solve a linear system
of equations to determine the coefficients. The computation
of these coefficients can be significantly accelerated if the
min-max criterion is based on the histogram of the field map
[11]. An alternative, promising approach, which avoids the
computational burden of solving a linear system but achieves
a comparable approximation error, was described in [12]. It
is limited to the case where the term z is purely imaginary,
i.e. only the field map is considered for correction. In the
following, we extend this approach to the case where z is
an arbitrary complex number, i.e. the relaxation term is also
included in the correction.

(12)

C. Gridding-based approximation

Let a real node v € [—%,1) and a complex frequency

z€Q:={ueC: |u|<§}w1thBereg1ven We
consider a suitable window function ¢(v) and its Fourier
transform ¢(z) # O evaluated at the complex value z. The
Fourier transform exists in the complex plane if for all © € R,
o(-)e* € L*(R) N L*(R), hence we restrict ¢ to that class.
The gridding-based approach makes use of the following
approximation

aB
+pu—1
1 2

aBp(z)

A b bs
2Tz o (v — E)e%ﬂ% (13)

b=—2F —p

with a real oversampling factor o > 1. (v) is the truncation
of the window function ¢(v) with a kernel of size 2u.

Approximation (13) was originally proposed for imaginary
z in [12] . The generalization for complex z follows in a
similar manner. For several window functions ¢, we obtained
error bounds for the relative error of (13). Each of them can
be written as

E< e~ #f(a) (14)

with a positive, monotone decreasing function f. For example,
for Gaussian and B-spline window functions, we obtained
an error bound of less than 1072 for o = 1.75 and p =
4. For the Kaiser-Bessel functions [18], no analytical error
bound of the form (14) could be found yet. However, in
numerical experiments, we have observed that they yield the
best approximation amongst the tested window functions.



Next, we translate approximation (13) into the framework
(10). First we choose an even integer B € N such that

|2plts c B B
2m 4’ 4
for all p and j, and a scaling factor T such that

R
TS| 22

for all j. Because the computational complexity grows with B,
we keep it as small as possible by centering z, and ¢,, which
involves in both domains a multiplication with an exponential.
We then obtain

Lty iz, T
efZPtJ' = egﬂ-l% 2[;
aB
G +pu—1
1 2 tj b _zpTb
~ B (2T Z ¥ T aB ¢
ab@\ 5 ) p=—ab_y

15)

The expression (15) has the form of (10) with K := aB+2u
and the coefficients
L tj K — K/2
=0 (%-5250).
1 TEoK/2

K 2 - inT e P K—2;4'
( - M)<P e

Because 1 has bounded support, the total number of coeffi-
cients a; ,, # 0 is less than (2p+1) M. Thus the complexity of
evaluating (11) is reduced to O(K N log N + ;M) operations.
We note that this reduction is only valuable for nonequispaced
trajectories, since, for equispaced trajectories, equation (11)
can be evaluated by FFTs in O(K N log N) operations.

Cryp 1=

IV. LEAST-SQUARES ESTIMATION OF IMAGE, FIELD MAP,
AND RELAXATION MAP IN IMAGE SPACE

In this section, the estimation of the image m and the
correction term z from multi-echo images is addressed. We
assume that the echo images m. are known at L echo times.
Following equation (2), we obtain the nonlinear system

1=0,....,[—1.

—T12p
)

(16)

m‘mp = mﬂe

This relation can be used to estimate the image m, and the
correction term z, for every voxel p = 0,...,N — 1. We
propose to minimize the nonlinear cost function

L—1
fmyp, zp) = Z (M — mpe_TLZp)2 T min . (17)
=0

Any nonlinear optimization method, such as the Simplex [19]
or the Levenberg-Marquard [20] algorithms, can be applied
for this purpose. When using only two echoes, one solution
of (17) can be computed explicitly without the need for a
nonlinear optimization.

The estimation of the imaginary part of z,, i.e. the field
map, in equation (17) is prone to wrapping errors. When using
equispaced echo times 7; = [0+ 7o, an infinite set {w,+27% :
k € Z} satisfies (17). Thus, if the solution is constrained in the

interval [—%, %), the echo spacing § should be kept small to

estimate the field map without having to apply an unwrapping
algorithm. However, when using trajectories with long readout
times, d cannot be reduced arbitrarily. In those cases, we
propose to combine two multi-echo measurements with the
same echo spacing, but with the first echo time of the second
measurement shifted by a suitable small §’. Hence, we obtain
nonequispaced echo times where the echo spacing alternates
between ¢’ and & — §’. The bandwidth of the field map is then
determined by the minimal echo spacing ¢’ yielding [-F;, %).

V. JOINT ESTIMATION OF IMAGE, FIELD MAP, AND
RELAXATION MAP

We now consider the general problem of jointly estimating
the image m and the correction term z from the data s, of
a multi-echo experiment. This problem can be addressed by
minimizing the nonlinear cost function

L-1
g(m, z) := Z |8, — HoP.,.m|3% ™F min.  (18)
1=0

Straightforward minimization of (18), e.g. by means of a
gradient descent algorithm [10], is feasible, but is generally
associated with relatively long computation times due to the
high-dimensionality of the problem. In this work, we propose
an alternative approach, that uses (6) and (7) to construct
a fixed-point iteration algorithm. A prerequisite is that fully
sampled k-space data are available for each echo time. If the
correction term z is known, the echo images m, can be
computed by solving (8) as explained in Sec. III. Moreover,
when the echo images m,, are known, the correction term
z and the image m can be estimated voxel-wise by solving
(17) as shown in Sec. IV. Thus, the proposed strategy is to
alternately estimate the echo images m., and the pair (m, z).
Each iteration n > 0 of the fixed-point iteration algorithm
consists of the following three steps:

1) The echo images m(#) are computed from the data s,
given the current value of z by the CGNR algorithm of
Sec. III. Fast matrix-vector multiplications with e.g. the
gridding-based approach can be applied in this step.

2) The correction term z(™) is estimated from the echo
images m(#) by the least-squares algorithm described

in Sec. IV.
3) Given the new correction term z(™) and the new image
m(?), the new residual ™ := g(m(», 2(") is com-

puted. To evaluate g, the fast matrix-vector multiplica-
tions with H _(.) can be used again. If 7(") > 7(»=1)
or the evolution in the residual is below a tolerance &,
then the procedure is stopped and z := z(»~1) and
m :=m("~1) are disbursed as final results. Otherwise,
the algorithm proceeds with iteration n + 1.

The proposed fixed-point iteration algorithm is summarized
in pseudo-code in Alg. 1. The residual r is computed explicitly
after each iteration to monitor the convergence of the algorithm
and is used as stopping criterion. The main advantage over
the methods in [10] is that the computationally demanding
nonlinear minimization of g is avoided, since the correction
term z is estimated voxel-wise from the echo images m,.



Input: s, €CM, 7, eR,1=0,...,L—1
kjc[-3,2)2%t€eR j=0,...,.M—1
W:diag((wj)jl\igl) € RM*XM - c R

set 20 =0

set 70 = o0
forn=1,2,... do
for | =0,...,L—1do
m‘(rn)
solve ||sy, — H -1ym'™ ||y — min by the

CGNR algorithm of Sec. III
end for
for p=0,...,N—1do
Ll (N 2 M) 5
solve Z (m(p’f)l - mg")e*”zp ) "—" min bya
nonlinleatr) optimization algorithm (Sec. IV)
end for
compute (™ := g(m(™) z(")
if 7™ > (=1 or % < ¢ then
set m = m("~1)
set z = z(»~1
break
end if
end for

Output: m € CV, z e CV

Algorithm 1: Pseudo-code of the fixed-point iteration algo-
rithm.

In practice, a preprocessing of the correction term before
multiplication with the matrix H , leads to better results.
We applied a mean-shift filter [21] to each of the real and
imaginary parts of the correction term. If the echo spacing ¢’
is too large, an additional unwrapping of the field map might
be applied.

VI. METHODS
A. Simulations

The simulations were based on a Shepp-Logan phantom
with a resolution of 256 x 256, to which a slightly smoothed
circular shutter with a radius of %71’ was applied in k-space. In
this way, we took into account that spiral acquisitions sample
only a circular area in k-space and that field inhomogeneity
leads to an additional signal modulation [12]. The main field
inhomogeneity was modeled by a parabolic field map with off-
resonance frequencies in the range of -125 Hz to +125 Hz. For
the relaxation map, an unmodified Shepp-Logan phantom was
scaled to fit into the range of 5 s~* to 50 s~!. The image, field
map, and relaxation map used for the simulations are shown
in Fig. 1.

To evaluate the accuracy of the gridding-based correction
algorithm of Sec. IIl, we simulated k-space data by a direct
evaluation of (5) using a spiral trajectory with 12 profiles, 6000
samples per profile and a sample interval of 10 us. Reconstruc-
tion was performed with the known field map and relaxation

map, using the proposed gridding-based correction algorithm
and the min-max interpolation with time segmentation from
[11] for comparison. We used Kaiser-Bessel functions as
window functions for the gridding-based algorithm.

To test the least-squares method for the estimation of the
image, field map, and relaxation map described in Sec. IV,
we simulated multi-echo images by evaluating (2) and adding
Gaussian noise with zero mean yielding a signal to noise ratio
of 20. The number of echo times included in the computation
varied from 2 to 32. A nonequispaced distribution of the echo
times, as described in Sec. IV, was chosen, with § = % ms
and ' = 1 ms. Note that the number of echoes decreases when
the echo spacing J increases: this is the situation encountered
in multi-echo imaging with fixed repetition time, where the
minimal echo spacing is bounded by the readout time and the
maximum number of echoes acquired is given by the repetition
time and the echo spacing.

The algorithm for the joint estimation of the image, field
map, and relaxation map was finally tested with multi-echo
data. First, the performance of the fixed-point iteration algo-
rithm was compared to that of the iterative minimization algo-
rithm of [10]. For that purpose, a dual-echo spiral trajectory
was used with 12 profiles, 6000 samples per profile, a sample
interval of 10 us, a difference between the echo times of &’ = 1
ms and 79 = 0 ms. The simulation and reconstruction were
performed using only the field map and, therefore, ignoring
relaxation effects, in order to reproduce the situation addressed
in [10]. Both algorithms used the same parameters for the
image reconstruction step, which used the histogram approach
described in [11]. They were initialized with the same field,
which was obtained after a gridding reconstruction of the
data. For the calculation of the spiral density weights, an
approximative method [22] was used. Next, multi-echo EPI
and spiral data were simulated with a grid size of 256 x 256,
a sample interval of 5 us, and L = 12 nonequispaced echo
times with 6 = 16 ms, ' = 1 ms, and 79 = 0 ms. The EPI
trajectory consisted of 32 EPI trains of lenght 8 each. The
spiral trajectory consisted of 24 profiles and 3000 samples
per profile. As parameters for the gridding-based correction
algorithm, K = 26 segments and 8 CGNR iterations were
used.

All algorithms were programmed in C. The reconstruction
was performed on a conventional workstation with an Intel
Xeon processor running at 2 GHz and with 4 GB of memory.
To quantify the accuracy of the proposed algorithms, the nor-
malized root mean square (NRMS) error was used as measure.
It was computed by taking the ratio between the Euclidean
norm of the difference between estimated and original vector
and the Euclidean norm of the original vector.

B. Experiments

In-vivo imaging in the brain was performed on a 1.5 T
Achieva whole-body scanner (Philips Medical Systems, Best,
The Netherlands). In order to test the joint estimation approach
in the presence of significant field inhomogeneities, a central
sagittal slice (slice thickness: 4 mm) was chosen. Multi-echo
EPI data were measured with a FOV of 270 mm, an image
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Fig. 1.

Field map

0.75
0 -

Image, field map, and relaxation map used in simulations. Shown are a filtered Shepp-Logan phantom on the left, a parabolic field map with

Relaxation map

off-resonance frequencies in the range of -125 Hz to +125 Hz in the middle, and an unfiltered Shepp-Logan phantom as relaxation map in the range of 5

s~ to 50 s~ on the right.

size of 256 x 256, and a repetition time of TR=100 ms. The
EPI trajectory consisted of 28 EPI trains of length 9 each. Five
echoes with an echo spacing of 6 = 20.1 ms were acquired
after each RF pulse. Two such multi-echo EPI measurements,
one with 79 = 11 ms and the other one with 79 = 12 ms, were
combined to obtain a minimal echo spacing of ¢’ = 1 ms.
Moreover, multi-echo spiral data were measured with a FOV
of 250 mm, an image size of 256 x 256, and a repetition time
of TR=100 ms. The spiral trajectory consisted of 17 profiles.
5 echoes with an echo spacing of 6 = 20 ms were acquired
sequentially. Again, two multi-echo measurements, one with
7o = 2 ms and the other one with 79 = 3 ms, were combined
to obtain a minimal echo spacing of ¢’ = 1 ms.

VII. RESULTS
A. Simulations

The results of the off-resonance and signal decay correction
with known field map and relaxation map for the simulated
spiral data are shown in Fig. 2a, for the proposed gridding-
based algorithm and for the min-max algorithm with time
segmentation. The accuracies of the two algorithms were
compared for different numbers of time segments K, and
after 10 CGNR iterations. Since the gridding-based correction
algorithm depends only indirectly on the number of segments
K, we chose a and m as parameter values for the gridding-
based algorithm to fit the desired K. For a = 1.25 and 4 = 2,
the resulting number of segments was K = 16. For less than
16 segments, the condition a > 1 does not hold true anymore,
and the gridding-based correction algorithm yields a poor
accuracy. For more than K = 16 segments, both algorithms
achieve similar reconstruction accuracy. Since the gridding-
based algorithm does not need to solve a linear system to
compute the coefficients a; .. and ¢ , of (10), it is faster than
the min-max interpolation for a given number of time segments
K.

Moreover, in order to motivate the use of a complex
correction term consisting of the field map and relaxation map
in the reconstruction, we compared three correction levels for
the reconstruction of the simulated spiral data: a reconstruc-
tion without correction (standard gridding reconstruction), a
reconstruction where only the field map was included in the

correction, and a reconstruction with both the field map and the
relaxation map included in the correction. The reconstructions
with non-zero correction terms used the gridding-based algo-
rithm with K = 16 segments. The results are shown in Fig.
2b. In this example, the off-resonance correction reduces the
reconstruction error from 27% to 8%. When both correction
terms are taken into account, the error can be reduced to
0.9%, which is a significant improvement. Interestingly, when
the field map and the relaxation map are both included in
the correction, the CGNR algorithm needs more iterations to
converge. This behaviour can be explained by the degradation
of the condition of the system matrix when the relaxation term
is included.

Next, we assessed the accuracy of the nonlinear least-
squares method for the estimation of the image, field map,
and relaxation map in image space. The NRMS errors of the
image, field map, and relaxation map are plotted as a function
of the number of echo times in Fig. 3. In the setting chosen, a
small echo time number corresponds to a large echo spacing. A
rapid decrease of the field map and relaxation map errors can
be observed as this number slightly increases. Since the time
latency between two echo times can be used to sample k-space
and reduce the overall acquisition time, a compromise has to
be found between scan speed and precision. The estimation of
the image also benefits from an increase in the number of echo
times, but not in the common square root fashion, because the
data at the successive echo times have decreasing SNR due to
relaxation.

The comparison of the fixed-point iteration algorithm and
the iterative optimization of [10] is summarized in Tab. I.
The normalized residual was computed as the ratio between
the residual at a given iteration and the residual at the
initialization. It indicates the progress in the minimization.
For both algorithms, the decrease of the residual is the largest
after one iteration, and is much slower afterwards. However,
after 5 iterations, the fixed-point iteration algorithm yields a
significantly lower value of the normalized residual. We also
observed that the convergence of the iterative optimization of
[10] was sensitive to the initial field map value provided. If
initialized with a zero field map, convergence was very slow.
Interestingly, the decrease of the residual yields a decrease
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a: As function of the number of segments K with 10 CGNR iterations for the gridding-based and for the min-max approach. b: As function of the number
of CGNR iterations for: a reconstruction with no correction, a reconstruction with correction of off-resonance only (gridding-based with K = 16), and a
reconstruction with correction of both off-resonance and signal decay (gridding-based with K = 16).

TABLE 1
COMPARISON OF THE FIXED-POINT ITERATION ALGORITHM AND THE ITERATIVE OPTIMIZATION ALGORITHM FOR THE JOINT ESTIMATION OF THE

IMAGE AND FIELD MAP FOR A SIMULATED DUAL-ECHO SPIRAL ACQUISITION.

[ Algorithm [[ Tteration [ Normalized residual | NRMS error (image) [ NRMS error (field map) | Running time |
1 7.3-1073 2.7-1072 4.9-1073 145 s
Iterative optimization [10] 5 7.2.103 2.5.102 4.7-1073 470 s
1 9.9-1073 2.7-1072 4.9-1073 28 s
Fixed-point iteration 5 6.9-10"3 1.3-107 1.4-1073 128 s
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Fig. 3. Estimation error of the image, field map, and relaxation map computed
by the least squares algorithm. Multi-echo images were simulated with the
images shown in Fig. 1 applying normal distributed noise (SNR=20). Plotted
is the normalized root mean square (NRMS) error as function of the number
of echo times.

in the estimation error of the image and the field map. This
suggests that monitoring this decrease is a good indicator
of the convergence of the fixed-point iterative algorithm. In
our implementation of the iterative optimization of [10], the
running time per iteration may vary, depending of the number
of steps needed to reach convergence in the gradient descent
step. By comparison, the running time of one iteration of
the fixed-point iteration algorithm is approximatively constant,

since the field map update is a non-iterative procedure. In
summary, the proposed fixed-point algorithm converges faster,
and each iteration takes less time, yielding an appreciable
decrease of overall computation time in this example.

The results of the joint estimation approach for the simu-
lated multi-echo EPI and spiral acquisitions are shown in
Fig. 4. The plots depict the evolution of the NRMS errors
of the reconstructed image, field map, and relaxation map as
a function of the number of iterations. Figs. 5 and 6 show the
corresponding images and maps obtained after one iteration
and after convergence. For both types of trajectories, the fixed-
point iteration algorithm converges within a few iterations. The
image and maps obtained after one iteration of the proposed
algorithm correspond to the standard estimates, reconstructed
without correction. Once convergence is reached, the estima-
tion errors of all quantities are reduced to a low level. Some
residual blurring can be observed at the edges of the phantom
in the multi-echo spiral case. This may be due to a less accu-
rate estimation of the field map at this location, as suggested by
the field map differences of Fig. 6. This blurring causes local
errors in the estimation of the relaxation map, which explains
the higher values in the relaxation error plot of Fig. 4. With that
exception, all quantities are estimated with a precision below
2%. Interestingly, the error decreases significantly between
the first iteration, which corresponds to a reconstruction with
no correction, and convergence, especially for the image and
the relaxation map. This demonstrates that the proposed joint
estimation yields an appreciable improvement in accuracy.
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Fig. 4. Reconstruction error of the fixed-point iteration algorithm as a function of the number of iterations.
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Fig. 5. Results of the fixed-point iteration algorithm for the multi-echo EPI dataset, after one iteration (Initial) and after convergence (Final). The resulting
estimates are shown on the left, the difference between estimated and original quantities on the right.
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B. Experiments

The results of the joint estimation approach applied to
multi-echo imaging in the brain are shown in Fig. 7 for the
EPI data, and in Fig. 8 for the spiral data. Significant field
inhomogeneity, with off-resonance values up to 150 Hz, can
be observed in the basal brain region, in the vicinity of the
sinus cavities, and causes loss of spatial information in the
two acquisitions. Moreover, with 75 values below 30 ms in
some areas, signal loss larger than 50% can occur considering
the long readout times of approximately 20 ms used in the
experiments. Reconstruction was performed with the fixed-
point iteration algorithm, which reached convergence in both
cases after four iterations. For the EPI acquisition, correction
of local geometric distortions of up to two voxels can be ob-
served between the initial and the final estimates. In the spiral
acquisition, the initial image and relaxation map are affected
by strong blurring artefacts, which are effectively corrected
after convergence of the fixed-point iteration algorithm.

VIII. DISCUSSION

Oft-resonance and relaxation-induced signal decay affect
the Fourier encoding in magnetic resonance imaging and
cause significant artefacts for acquisitions with long readout

times. While an accurate correction of these two effects in
principle requires the knowledge of both a field map and a
relaxation map, we showed that a joint estimation approach
of image and maps can be adopted in the case of multi-
echo acquisitions. With this method, separate measurements
of the field map and the relaxation map are not required, thus
dispensing with time-consuming additional scans. By applying
the proposed reconstruction, longer readout times can be used
for data acquisition without compromising accuracy in the
estimation of the image and of the relaxation map. Therefore,
the proposed framework can be applied to reduce the total scan
time in multi-echo imaging, as demonstrated in this work with
the use of echo planar and spiral trajectories.

The use of longer readout times for data acquisition leads to
an increase of the minimal echo spacing achievable between
two echo times. This in turn may lead to a severe degradation
of the estimation of the field map and of the relaxation
map, as illustrated by the results of Fig. 3. To mitigate
the wrapping errors in the estimation of the field map, we
proposed to combine two distinct multi-echo acquisitions with
a large echo spacing and slightly different first echo times.
The resulting echo times are nonequispaced. The sampling
of the echo times should also be adapted to the expected
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relaxation rates, and, therefore, there is a limit to the maximal
readout time that can be used in practice. Even with these
limitations, the simulation results show that the relaxation map
can be estimated accurately with a significant reduction of scan
time: for example, relaxation rates could be estimated with a
precision of 1% by combining two EPI acquisitions with an
echo train of length 8, resulting in a net acceleration of 4 in
comparison to a standard Cartesian acquisition.

In general, the solution of a high-dimensional, nonlinear
estimation problem is a complex optimization task associated
with long computation times. In the special case of the
joint estimation of the image, field map, and relaxation map
from multi-echo data, we were able to derive an efficient
computation algorithm. The central idea was to apply a fast
correction algorithm to reconstruct an image at each echo
time, and to perform the estimation of the field map and the
relaxation map in image space, where these two quantities can
be estimated voxel-wise by means of efficient nonlinear least-
squares methods. The resulting fixed-point iteration algorithm
was shown to converge rapidly, typically in less than 10
iterations, and did not require a good initialization of the field
map and the relaxation map. In the case of dynamic experi-
ments, for which small changes of the field map and relaxation
map are expected, the proposed fixed-point iteration algorithm
and the iterative minimization algorithm of [10] may perform
comparably, and it is likely that the linearization approach
presented in [8] yields sufficient accuracy in less computation
time. However, for the case of multi-echo imaging without any
prior knowledge of the field map and the relaxation map, the
fixed-point iteration algorithm turns out to be more efficient in
terms of running time. For the multi-echo EPI data of the in-
vivo experiment, consisting of 10 echoes and an image size of
256 x 256, the running time of one iteration of the fixed-point
iteration algorithm was below two minutes. A limitation of
this algorithm in comparison with more general optimization
approaches is that it currently requires fully sampled datasets
at the different echo times.

During the course of the fixed-point iterations, the recon-
struction of the echo images must be repeated with different
values of the field map and the relaxation map. Hence,
applying the min-max algorithm with time segmentation of
[11] would necessitate to compute new coefficients a; . and
Cx,p in (10) at each iteration, by solving a linear system, which
is computationally prohibitive. Systematic recomputation of
these coefficients may be avoided if the histogram of the
field map is used for the min-max criterion, since it can be
argued that this one does not vary substantially from one
iteration to the next. The alternative, gridding-based algorithm
described in this work allows for a direct evaluation of the
required coefficients by means of a suitable window function.
It was shown to provide a very good accuracy provided a
sufficient number of segments is used. This algorithm may
find applications outside multi-echo imaging, in cases where
a field map and a relaxation map are readily available.
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